共查询到20条相似文献,搜索用时 15 毫秒
1.
A single immunoglobulin-domain protein required for clustering acetylcholine receptors in C. elegans
At Caenorhabditis elegans neuromuscular junctions (NMJs), synaptic clustering of the levamisole-sensitive acetylcholine receptors (L-AChRs) relies on an extracellular scaffold assembled in the synaptic cleft. It involves the secreted protein LEV-9 and the ectodomain of the transmembrane protein LEV-10, which are both expressed by muscle cells. L-AChRs, LEV-9 and LEV-10 are part of a physical complex, which localizes at NMJs, yet none of its components localizes independently at synapses. In a screen for mutants partially resistant to the cholinergic agonist levamisole, we identified oig-4, which encodes a small protein containing a single immunoglobulin domain. The OIG-4 protein is secreted by muscle cells and physically interacts with the L-AChR/LEV-9/LEV-10 complex. Removal of OIG-4 destabilizes the complex and causes a loss of L-AChR clusters at the synapse. Interestingly, OIG-4 partially localizes at NMJs independently of LEV-9 and LEV-10, thus providing a potential link between the L-AChR-associated scaffold and local synaptic cues. These results add a novel paradigm for the immunoglobulin super-family as OIG-4 is a secreted protein required for clustering ionotropic receptors independently of synapse formation. 相似文献
2.
Burrows AE Sceurman BK Kosinski ME Richie CT Sadler PL Schumacher JM Golden A 《Development (Cambridge, England)》2006,133(4):697-709
Maturation promoting factor (MPF), a complex of cyclin-dependent kinase 1 and cyclin B, drives oocyte maturation in all animals. Mechanisms to block MPF activation in developing oocytes must exist to prevent precocious cell cycle progression prior to oocyte maturation and fertilization. This study sought to determine the developmental consequences of precociously activating MPF in oocytes prior to fertilization. Whereas depletion of Myt1 in Xenopus oocytes causes nuclear envelope breakdown in vitro, we found that depletion of the Myt1 ortholog WEE-1.3 in C. elegans hermaphrodites causes precocious oocyte maturation in vivo. Although such oocytes are ovulated, they are fertilization incompetent. We have also observed novel phenotypes in these precociously maturing oocytes, such as chromosome coalescence, aberrant meiotic spindle organization, and the expression of a meiosis II post-fertilization marker. Furthermore, co-depletion studies of CDK-1 and WEE-1.3 demonstrate that WEE-1.3 is dispensable in the absence of CDK-1, suggesting that CDK-1 is a major target of WEE-1.3 in C. elegans oocytes. 相似文献
3.
Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. 总被引:6,自引:0,他引:6 下载免费PDF全文
Agrin is an extracellular matrix component which promotes the clustering of nicotinic acetylcholine receptors (nAChRs) and other proteins at the neuromuscular junction. This aggregation process is one of the earliest steps in synapse formation. Expression of highly active isoforms of agrin, generated by alternative splicing, is restricted to neurons in the central nervous system (CNS) including motoneurons. In the experiments reported here we investigate the regions of agrin necessary for nAChR clustering activity using two different methods. First, we expressed truncated soluble forms of the agrin protein in mammalian cells and assessed their clustering activity. Second, we generated a panel of monoclonal antibodies (mAbs) against agrin and mapped their epitopes. Several mAbs block agrin-induced aggregation of nAChRs. One of the mAbs, Agr86, binds exclusively to the CNS-specific splicing variants and thus identifies an epitope common only to these more active isoforms. Mapping of the Agr86 epitope suggests that alternative splicing results in a distributed conformational change in the agrin protein. Taken together our data suggest that four domains in the C-terminal 55 kDa of agrin contribute to its nAChR clustering activity. 相似文献
4.
Exocytic trafficking is required for nicotine-induced up-regulation of alpha 4 beta 2 nicotinic acetylcholine receptors 总被引:3,自引:0,他引:3
Darsow T Booker TK Piña-Crespo JC Heinemann SF 《The Journal of biological chemistry》2005,280(18):18311-18320
The primary target for nicotine in the brain is the neuronal nicotinic acetylcholine receptor (nAChR). It has been well documented that nAChRs respond to chronic nicotine exposure by up-regulation of receptor numbers, which may underlie some aspects of nicotine addiction. In order to investigate the mechanism of nicotine-induced nAChR up-regulation, we have developed a cell culture system to assess membrane trafficking and nicotine-induced up-regulation of surface-expressed alpha(4)beta(2) nAChRs. Previous reports have implicated stabilization of the nAChRs at the plasma membrane as the potential mechanism of up-regulation. We have found that whereas nicotine exposure results in up-regulation of surface receptors in our system, it does not alter surface receptor internalization from the plasma membrane, postendocytic trafficking, or lysosomal degradation. Instead, we find that transport of nAChRs through the secretory pathway to the plasma membrane is required for nicotine-induced up-regulation of surface receptors. Therefore, nicotine appears to regulate surface receptor levels at a step prior to initial insertion in the plasma membrane rather than by altering their endocytic trafficking or degradation rates as had been previously suggested. 相似文献
5.
Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. 总被引:12,自引:0,他引:12 下载免费PDF全文
Centrosomes mature as cells enter mitosis, accumulating gamma-tubulin and other pericentriolar material (PCM) components. This occurs concomitant with an increase in the number of centrosomally organized microtubules (MTs). Here, we use RNA-mediated interference (RNAi) to examine the role of the aurora-A kinase, AIR-1, during centrosome maturation in Caenorhabditis elegans. In air-1(RNAi) embryos, centrosomes separate normally, an event that occurs before maturation in C. elegans. After nuclear envelope breakdown, the separated centrosomes collapse together, and spindle assembly fails. In mitotic air-1(RNAi) embryos, centrosomal alpha-tubulin fluorescence intensity accumulates to only 40% of wild-type levels, suggesting a defect in the maturation process. Consistent with this hypothesis, we find that AIR-1 is required for the increase in centrosomal gamma-tubulin and two other PCM components, ZYG-9 and CeGrip, as embryos enter mitosis. Furthermore, the AIR-1-dependent increase in centrosomal gamma-tubulin does not require MTs. These results suggest that aurora-A kinases are required to execute a MT-independent pathway for the recruitment of PCM during centrosome maturation. 相似文献
6.
The NCK adaptor proteins are composed entirely of SH3 and SH2 domains and serve as protein interaction bridges for several receptors during signal transduction events. Here we report the molecular and genetic analysis of the Caenorhabditis elegans nck-1 gene. C. elegans nck-1 encodes two isoforms: NCK-1A and a shorter isoform that lacks the first SH3 domain, NCK-1B. C. elegans nck-1 mutants exhibit defects in axon guidance and neuronal cell position, as well as defects in the excretory canal cell, gonad, and male mating. NCK-1 is broadly expressed in neurons and epithelial cells with NCK-1B being the most abundant isoform. NCK-1A and NCK-1B share a similar expression pattern in parts of the nervous system, but also have independent expression patterns in other tissues. Interestingly, NCK-1B is localized to the nuclei of many cells. Genetic rescue experiments show that NCK-1 functions cell autonomously and, in general, either NCK-1A or NCK-1B is sufficient to function in axon guidance. However, there appears to be specific roles for each isoform, for example NCK-1B is required for HSN cell migration while NCK-1A is required for efficient male mating. Genetic epistasis experiments show that NCK-1 functions redundantly with the LAR Receptor Tyrosine Phosphatase, PTP-3, and the Netrin receptor UNC-40. 相似文献
7.
Kamens HM McKinnon CS Li N Helms ML Belknap JK Phillips TJ 《Genes, Brain & Behavior》2009,8(6):600-609
Alcohol and nicotine are coabused, and preclinical and clinical data suggest that common genes may influence responses to both drugs. A gene in a region of mouse chromosome 9 that includes a cluster of three nicotinic acetylcholine receptor (nAChR) subunit genes influences the locomotor stimulant response to ethanol. The current studies first used congenic mice to confirm the influential gene on chromosome 9. Congenic F2 mice were then used to more finely map the location. Gene expression of the three subunit genes was quantified in strains of mice that differ in response to ethanol. Finally, the locomotor response to ethanol was examined in mice heterozygous for a null mutation of the α3 nAChR subunit gene ( Chrna3 ). Congenic data indicate that a gene on chromosome 9, within a 46 cM region that contains the cluster of nAChR subunit genes, accounts for 41% of the genetic variation in the stimulant response to ethanol. Greater expression of Chrna3 was found in whole brain and dissected brain regions relevant to locomotor behavior in mice that were less sensitive to ethanol-induced stimulation compared to mice that were robustly stimulated; the other two nAChR subunit genes in the gene cluster (α5 and β4) were not differentially expressed. Locomotor stimulation was not expressed on the genetic background of Chrna3 heterozygous (+/−) and wild-type (+/+) mice; +/− mice were more sensitive than +/+ mice to the locomotor depressant effects of ethanol. Chrna3 is a candidate gene for the acute locomotor stimulant response to ethanol that deserves further examination. 相似文献
8.
The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila 下载免费PDF全文
Acetylcholine is the major excitatory neurotransmitter in the central nervous system of insects. Mutant analysis of the Dalpha7 nicotinic acetylcholine receptor (nAChR) of Drosophila shows that it is required for the giant fiber-mediated escape behavior. The Dalpha7 protein is enriched in the dendrites of the giant fiber, and electrophysiological analysis of the giant fiber circuit showed that sensory input to the giant fiber is disrupted, as is transmission at an identified cholinergic synapse between the peripherally synapsing interneuron and the dorsal lateral muscle motor neuron. Moreover, we found that gfA1, a mutation identified in a screen for giant fiber defects more than twenty years ago, is an allele of Dalpha7. Therefore, a combination of behavioral, electrophysiological, anatomical, and genetic data indicate an essential role for the Dalpha7 nAChR in giant fiber-mediated escape in Drosophila. 相似文献
9.
10.
The two hallmark lesions of Alzheimer's disease (AD) are extracellular amyloid plaques, mainly formed by a small peptide called amyloid-beta (Abeta), and neurofibrillary tangles, which are intracellular inclusions formed by aggregates of hyperphosphorylated tau protein. One of the major neurochemical features of AD is the marked reduction of nicotinic acetylcholine receptors in disease-relevant brain regions such as the cerebral cortex and hippocampus. This loss is further compounded by the loss of cholinergic cells, which contributes to the cognitive dysfunction. This observation has had a major impact on therapeutic treatments, as efforts to restore cholinergic function such as the administration of acetylcholinesterase inhibitors have been, until recently, the major treatment options available for AD. Understanding the relationship of these hallmark lesions with the plethora of other changes that occur in the AD brain has proven to be a difficult challenge to resolve. The utilization of transgenic mouse models, that recapitulate one or more neuropathological and neurochemical features of the AD brain is providing some inroads, as they offer a means to gain mechanistic insights into the disease process in an in vivo setting. In this review, we consider the role of nicotinic acetylcholine receptors in transgenic models and in AD. 相似文献
11.
PAR-3 is localized asymmetrically in epithelial cells in a variety of animals from Caenorhabditis elegans to mammals. Although C. elegans PAR-3 is known to act in early blastomeres to polarize the embryo, a role for PAR-3 in epithelial cells of C. elegans has not been established. Using RNA interference to deplete PAR-3 in developing larvae, we discovered a requirement for PAR-3 in spermathecal development. Spermathecal precursor cells are born during larval development and differentiate into an epithelium that forms a tube for the storage of sperm. Eggs must enter the spermatheca to complete ovulation. PAR-3-depleted worms exhibit defects in ovulation. Consistent with this phenotype, PAR-3 is transiently expressed and localized asymmetrically in the developing somatic gonad, including the spermathecal precursor cells of L4 larvae. We found that the defect in ovulation can be partially suppressed by a mutation in IPP-5, an inositol polyphosphate 5-phosphatase, indicating that one effect of PAR-3 depletion is disruption of signaling between oocyte and spermatheca. Microscopy revealed that the distribution of AJM-1, an apical junction marker, and apical microfilaments are severely affected in the distal spermatheca of PAR-3-depleted worms. We propose that PAR-3 activity is required for the proper polarization of spermathecal cells and that defective ovulation results from defective distal spermathecal development. 相似文献
12.
Culetto E Baylis HA Richmond JE Jones AK Fleming JT Squire MD Lewis JA Sattelle DB 《The Journal of biological chemistry》2004,279(41):42476-42483
The anthelmintic drug levamisole causes hypercontraction of body wall muscles and lethality in nematode worms. In the nematode Caenorhabditis elegans, a genetic screen for levamisole resistance has identified 12 genes, three of which (unc-38, unc-29, and lev-1) encode nicotinic acetylcholine receptor (nAChR) subunits. Here we describe the molecular and functional characterization of another levamisole-resistant gene, unc-63, encoding a nAChR alpha subunit with a predicted amino acid sequence most similar to that of UNC-38. Like UNC-38 and UNC-29, UNC-63 is expressed in body wall muscles. In addition, UNC-63 is expressed in vulval muscles and neurons. We also show that LEV-1 is expressed in body wall muscle, thus overlapping the cellular localization of UNC-63, UNC-38, and UNC-29 and suggesting possible association in vivo. This is supported by electrophysiological studies on body wall muscle, which demonstrate that a levamisole-sensitive nAChR present at the C. elegans neuromuscular junction requires both UNC-63 and LEV-1 subunits. Thus, at least four subunits, two alpha types (UNC-38 and UNC-63) and two non-alpha types (UNC-29 and LEV-1), can contribute to levamisole-sensitive muscle nAChRs in nematodes. 相似文献
13.
Delattre M Leidel S Wani K Baumer K Bamat J Schnabel H Feichtinger R Schnabel R Gönczy P 《Nature cell biology》2004,6(7):656-664
Centrosomes, the major microtubule-organizing centres (MTOCs) of animal cells, are comprised of a pair of centrioles surrounded by pericentriolar material (PCM). Early in the cell cycle, there is a single centrosome, which duplicates during S-phase to direct bipolar spindle assembly during mitosis. Although crucial for proper cell division, the mechanisms that govern centrosome duplication are not fully understood. Here, we identify the Caenorhabditis elegans gene sas-5 as essential for daughter-centriole formation. SAS-5 is a coiled-coil protein that localizes primarily to centrioles. Fluorescence recovery after photobleaching (FRAP) experiments with green fluorescent protein (GFP) fused to SAS-5 (GFP-SAS-5) demonstrated that the protein shuttles between centrioles and the cytoplasm throughout the cell cycle. Analysis of mutant alleles revealed that the presence of SAS-5 at centrioles is crucial for daughter-centriole formation and that ZYG-1, a kinase that is also essential for this process, controls the distribution of SAS-5 to centrioles. Furthermore, partial RNA-interference (RNAi)-mediated inactivation experiments suggest that both sas-5 and zyg-1 are dose-dependent regulators of centrosome duplication. 相似文献
14.
Ependymal cells are part of the neurogenic niche in the adult subventricular zone of the lateral ventricles, where they regulate neurogenesis and neuroblast migration. Ependymal cells are generated from radial glia cells during embryonic brain development and acquire their final characteristics postnatally. The homeobox gene Six3 is expressed in ependymal cells during the formation of the lateral wall of the lateral ventricles in the brain. Here, we show that Six3 is necessary for ependymal cell maturation during postnatal stages of brain development. In its absence, ependymal cells fail to suppress radial glia characteristics, resulting in a defective lateral wall, abnormal neuroblast migration and differentiation, and hydrocephaly. 相似文献
15.
In wild-type Caenorhabditis elegans, the gonad is a complex epithelial tube that consists of long arms composed predominantly of germline tissue as well as somatic structures specialized for particular reproductive functions. In gon-1 mutants, the adult gonad is severely disorganized with essentially no arm extension and no recognizable somatic structure. The developmental defects in gon-1 mutants are limited to the gonad; other cells, tissues, and organs appear to develop normally. Previous work defined the regulatory "leader" cells as crucial for extension of the gonadal arms (J. E. Kimble and J. G. White, 1981, Dev. Biol. 81, 208-219). In gon-1 mutants, the leader cells are specified correctly, but they fail to migrate and gonadal arms are not generated. In addition, gon-1 is required for morphogenesis of the gonadal somatic structures. This second role appears to be independent of that required for leader migration. Parallel studies have shown that gon-1 encodes a secreted metalloprotease (R. Blelloch and J. Kimble, 1999, Nature 399, 586-590). We discuss how a metalloprotease may control two aspects of gonadal morphogenesis. 相似文献
16.
Nicotinic acetylcholine receptor of the electric ray Torpedo is the most comprehensively characterized neurotransmitter receptor. It consists of five subunits (alpha2beta gammadelta) amino acid sequences of which were determined by cDNA cloning and sequencing. The shape and size of the receptor were determined by electron cryomicroscopy. It has two agonist/competitive antagonist binding sites which are located between subunits near the membrane surface. The receptor ion channel is formed by five transmembrane helices (M2) of all five subunits. The position of the binding site for noncompetitive ion channel blockers was found by photoaffinity labelling and site-directed mutagenesis. The intrinsic feature of the receptor structure is the position of the agonist/competitive antagonist binding sites in close vicinity to the ion channel spanning the bilayer membrane. This peculiarity may substantially enhance allosteric transitions transforming the ligand binding into the channel opening and physiological response. Muscle nicotinic acetylcholine receptors from birds and mammals are also pentaoligomers consisting of four different subunits (alpha2beta gammadelta or alpha2beta epsilondelta) with high homology to the Torpedo receptor. Apparently, the pentaoligomeric structure is the main feature of all nicotinic, both muscle and neuronal, receptors. However, the neuronal receptors are formed only by two subunit types (alpha and beta) or are even pentahomomers (alpha7 neuronal receptors). All nicotinic receptors are ligand-gated ion channel, the properties of the channels being essentially determined by amino acid residues forming M2 transmembrane fragments. 相似文献
17.
Fertilization, the union of sperm and egg to form a new organism, is a critical process that bridges generations. Although the cytological and physiological aspects of fertilization are relatively well understood, little is known about the molecular interactions that occur between gametes. C. elegans has emerged as a powerful system for the identification of genes that are necessary for fertilization. C. elegans spe-42 mutants are sterile, producing cytologically normal spermatozoa that fail to fertilize oocytes. Indeed, male mating behavior, sperm transfer to hermaphrodites, sperm migration to the spermatheca, which is the site of fertilization and sperm competition are normal in spe-42 mutants. spe-42 mutant sperm make direct contact with oocytes in the spermatheca, suggesting that SPE-42 plays a role during sperm-egg interactions just prior to fertilization. No other obvious defects were observed in spe-42 mutant worms. Cloning and sequence analysis revealed that SPE-42 is a novel predicted 7-pass integral membrane protein with homologs in many metazoan species, suggesting that its mechanism of action could be conserved. 相似文献
18.
Protein phosphorylation of nicotinic acetylcholine receptors 总被引:5,自引:0,他引:5
The nicotinic acetylcholine receptor (nAcChR) is a ligand-gated ion channel found in the postsynaptic membranes of electric organs, at the neuromuscular junction, and at nicotinic cholinergic synapses of the mammalian central and peripheral nervous system. The nAcChR from Torpedo electric organ and mammalian muscle is the most well-characterized neurotransmitter receptor in biology. It has been shown to be comprised of five homologous (two identicle) protein subunits (alpha 2 beta gamma delta) that form both the ion channel and the neurotransmitter receptor. The nAcChR has been purified and reconstituted into lipid vesicles with retention of ion channel function and the primary structure of all four protein subunits has been determined. Protein phosphorylation is a major posttranslational modification known to regulate protein function. The Torpedo nAcChR was first shown to be regulated by phosphorylation by the discovery that postsynaptic membranes contain protein kinases that phosphorylate the nAcChR. Phosphorylation of the nAcChR has since been shown to be regulated by the cAMP-dependent protein kinase, protein kinase C, and a tyrosine-specific protein kinase. Phosphorylation of the nAcChR by cAMP-dependent protein kinase has been shown to increase the rate of nAcChR desensitization, the process by which the nAcChR becomes inactivated in the continued presence of agonist. In cultured muscle cells, phosphorylation of the nAcChR has been shown to be regulated by cAMP-dependent protein kinase, a Ca2+-sensitive protein kinase, and a tyrosine-specific protein kinase. Stimulation of the cAMP-dependent protein kinase in muscle also increases the rate of nAcChR desensitization and correlates well with the increase in nAcChR phosphorylation. The AcChR represents a model system for how receptors and ion channels are regulated by second messengers and protein phosphorylation. 相似文献
19.
The simple nematode, Caenorhabditis elegans, possesses the most extensive known gene family of nicotinic acetylcholine receptor (nAChR)-like subunits. Whilst all show greatest similarity with nAChR subunits of both invertebrates and vertebrates, phylogenetic analysis suggests that just over half of these (32) may represent other members of the cys-loop ligand-gated ion channel superfamily. We have introduced a novel nomenclature system for these “Orphan” subunits, designating them as lgc genes (ligand-gated ion channels of the cys-loop superfamily), which can also be applied in future to unnamed and uncharacterised members of the cys-loop ligand-gated ion channel superfamily. We present here the resulting updated version of the C. elegans nAChR gene family and related ligand-gated ion channel genes. 相似文献
20.
Autophagy is required for dietary restriction-mediated life span extension in C. elegans 总被引:2,自引:0,他引:2
Dietary restriction extends life span in diverse species including Caenorhabditis elegans. However, the downstream cellular targets regulated by dietary restriction are largely unknown. Autophagy, an evolutionary conserved lysosomal degradation pathway, is induced under starvation conditions and regulates life span in insulin signaling C. elegans mutants. We now report that two essential autophagy genes (bec-1 and Ce-atg7) are required for the longevity phenotype of the C. elegans dietary restriction mutant (eat-2(ad1113) animals. Thus, we propose that autophagy mediates the effect, not only of insulin signaling, but also of dietary restriction on the regulation of C. elegans life span. Since autophagy and longevity control are highly conserved from C. elegans to mammals, a similar role for autophagy in dietary restriction-mediated life span extension may also exist in mammals. 相似文献