首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study determined whether exercise training in rats would prevent the accumulation of lipids and depressed glucose utilization found in hearts from diabetic rats. Diabetes was induced by intravenous streptozotocin (60 mg/kg). Trained diabetic rats were run on a treadmill for 60 min, 27 m/min, 10% grade, 6 days/wk for 10 wk. Training of diabetic rats had no effect on glycemic control but decreased plasma lipids. In vivo myocardial long-chain acylcarnitine, acyl-CoA, and high-energy phosphate levels were similar in sedentary control, sedentary diabetic, and trained diabetic groups. The levels of myocardial triacylglycerol were similar in sedentary control and diabetic rats but decreased in trained diabetic rats. Hearts were perfused with buffer containing diabetic concentrations of glucose (22 mM) and palmitate (1.2 mM). D-[U-14C] glucose oxidation rates (14CO2 production) were depressed in hearts from sedentary diabetic rats relative to sedentary control rats. Hearts from trained diabetic rats exhibited increased glucose oxidation relative to those of sedentary diabetic rats, but this improvement was below that of the sedentary control rats. [9,10(-3)H]palmitate oxidation rates (3H2O production) were identical in all three groups. These findings suggest that exercise training resulted in a partial normalization of myocardial glucose utilization in diabetic rats.  相似文献   

2.
The response of hypertrophied soleus and plantaris muscle of rats to endurance training was studied. Hypertrophy was produced by bilateral extirpation of the gastrocnemius muscle. A 13-wk training program of treadmill running initiated 30 days after removal of the gastrocnemius muscle accentuated (P less than 0.01) the hypertrophy. Succinate dehydrogenase activities of the enlarged muscles of sedentary rats were similar to those of normal animals, as were the increases associated with training. Phosphorylase and hexokinase activities were unaltered as a result of the experimental perturbations. Rates of glycogen depletion during exercise were lower (P less than 0.01) in the liver and soleus and plantaris muscles of endurance-trained animals. No difference existed in the rate of glycogen depletion of normal and hypertrophied muscle within the sedentary or trained groups. These data demonstrate that extensively hypertrophied muscle responds to training and exercise in a manner similar to that of normal muscle.  相似文献   

3.
We compared the changes in monocarboxylate transporter 1 (MCT1) and 4 (MCT4) proteins in heart and skeletal muscles in sedentary control and streptozotocin (STZ)-induced diabetic rats (3 wk) and in trained (3 wk) control and STZ-induced diabetic animals. In nondiabetic animals, training increased MCT1 in the plantaris (+51%; P < 0.01) but not in the soleus (+9%) or the heart (+14%). MCT4 was increased in the plantaris (+48%; P < 0.01) but not in the soleus muscles of trained nondiabetic animals. In sedentary diabetic animals, MCT1 was reduced in the heart (-30%), and in the plantaris (-31%; P < 0.01) and soleus (-26%) muscles. MCT4 content was also reduced in sedentary diabetic animals in the plantaris (-52%; P < 0.01) and soleus (-25%) muscles. In contrast, in trained diabetic animals, MCT1 and MCT4 in heart and/or muscle were similar to those of sedentary, nondiabetic animals (P > 0.05) but were markedly greater than in the sedentary diabetic animals [MCT1: plantaris +63%, soleus +51%, heart +51% (P > 0.05); MCT4: plantaris +107%, soleus +17% (P > 0.05)]. These studies have shown that 1) with STZ-induced diabetes, MCT1 and MCT4 are reduced in skeletal muscle and/or the heart and 2) exercise training alleviated these diabetes-induced reductions.  相似文献   

4.
This study compared the effects of glucose feeding and water on endurance performance, glycogen utilization, and endocrine responses to exhaustive running in rats. Forty-eight trained rats ran at approximately 70% peak O2 consumption (VO2) while receiving, via gavage, 1 ml of an 18% glucose solution or water every 30 min. Glucose- (GF) and water-fed rats (WF) were pair matched and killed at rest, at 25 or 50% of their previously determined run time to exhaustion, or at exhaustion. Run times to exhaustion were 4.6 +/- 1.0 and 3.0 +/- 0.9 h in GF and WF rats, respectively. In WF rats, plasma glucose declined continuously from a resting value of 7.4 +/- 0.5 to 1.8 +/- 0.5 mM at exhaustion and was lower than in GF rats at all exercise time points. In GF rats, glucose was maintained at 7.4 +/- 0.5 mM for 3 h before dropping to 3.9 +/- 0.6 mM at exhaustion. In both groups, liver and muscle glycogen decreased dramatically during the 1st h and changed only slightly thereafter. During the 3rd h, glycogen levels were maintained in GF rats but continued to decrease in WF rats (P less than 0.05). Insulin decreased during exercise and was not significantly different between groups. Glucagon, epinephrine, norepinephrine, and corticosterone increased to a greater extent in WF than in GF rats during the first 3 h of exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Recent evidence suggests that exercise training may significantly increase the expression of the cardiac myosin isozyme V1 in the diabetic heart, a change associated with improved cardiac functional capacity. To test this hypothesis, cardiac myofibrillar adenosinetriphosphatase (ATPase) activity and myosin isozyme profiles were determined in trained and sedentary male hyperinsulinemic obese Zucker (OZT, OZS) and obese Wistar (OWT, OWS) rats. Lean sedentary (LZS, LWS) animals served as age-matched controls. Myofibrillar ATPase activity and the relative quantity of the high-ATPase isozyme V1 was significantly lower in both strains of sedentary obese rats than in the respective lean sedentary controls (P less than 0.05). Both 5 (OZT) and 10 wk (OWT) of moderate treadmill training increased these markers of cardiac myosin biochemistry in the obese animals (P less than 0.05). Thus, endurance exercise training remodels the cardiac isomyosin profile of hyperinsulinemic rats and, in doing so, may enhance cardiac contractility and functional capacity. Such changes may reflect an improvement in glucose availability and utilization in these hearts.  相似文献   

6.
We hypothesized that glycogenesis increases in muscle during exercise before significant glycogen depletion occurs. Therefore, rats ran for 15 or 90 min at speeds of 8-22 m/min. D-[5-3H]glucose (10 microCi/100 g body wt) was administered 10 min before the end of exercise. Hindlimb muscles [soleus (SOL), plantaris (PL), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG)] and a portion of liver were analyzed for glycogen concentrations and rates of glycogen synthesis (i.e., D-[3H]glucose incorporated into glycogen). At rest, marked differences were observed among muscles in their rates of glucose incorporation into glycogen: i.e., SOL = 24.3 +/- 3.1, RG = 5.4 +/- 1.9, PL = 2.8 +/- 1.1, EDL = 0.54 +/- 0.10, WG = 0.12 +/- 0.02 (SE) dpm.micrograms glycogen-1.10 min-1 (P less than 0.05 between respective muscles). Compared with the glucose incorporation into glycogen at rest, increments in the PL (272%), RG (189%), WG (400%), EDL (274%), and liver (175%) were observed after 90 min of exercise (P less than 0.05, all data). In contrast, a decrease in glucose incorporation into glycogen (-62%) occurred in the SOL at min 15 (P less than 0.05), but this returned to the rates observed at rest after 90 min of exercise. This measure for rates of net glycogen synthesis (dpm.microgram glycogen-1.10 min-1) was weakly related to the ambient glycogen levels in most muscles; the exception was the SOL (r = -0.79; P less than 0.05). There was up to a 50-fold difference in glycogen synthesis among muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To evaluate the relationship between enhanced insulin action and level of exercise training, in vivo glucose uptake was assessed in the absence of added insulin and during insulin-stimulated conditions for three activity levels of voluntarily trained rats (low 2-5 km/day, medium 6-9 km/day, high 11-16 km/day). After rats rested for 24 h and fasted overnight, glucose uptake was estimated by comparing steady-state serum glucose (SSSG) levels at low insulin (SSSI) concentrations achieved during an insulin suppression test. In the absence of added insulin, SSSI averaged approximately 20 microU/ml and glucose uptake was similar for high runners and younger weight-matched controls. However, with insulin added to sustain SSSI at approximately 35 microU/ml, SSSG was significantly reduced in all runners (P less than 0.02), with the lowest value attained in high runners. Fasting serum triglycerides were also reduced in all runners (P less than 0.05), with the lowest values seen in medium and high runners. The concentration of glycogen in liver and select skeletal muscles at the start of the study was not different between trained and control rats, suggesting that enhanced insulin-stimulated glucose uptake was not the result of lower glycogen levels. In addition, glycogen synthase and succinate dehydrogenase activities in biceps femoris muscle were only elevated for high runners, but glycogen synthase activity was not enhanced in plantaris muscle and was decreased in soleus muscle. These findings indicate that enhanced insulin-stimulated glucose uptake and reduced serum triglyceride concentrations induced in exercise-trained rats at varying activity levels are dissociated from changes in glycogen synthase and oxidative enzyme activity for skeletal muscle.  相似文献   

8.
Male and female Wistar rats were run for 5 min at 1.7 mph at a 17% grade to determine whether a sex difference exists in the rate of glycogen resynthesis during recovery in fast-twitch red muscle, fast-twitch white muscle, and liver. Rats were killed at one of three time points: immediately after the exercise bout, and at 1 or 4 h later. Males had significantly higher resting muscle glycogen levels (P less than 0.05). Exercise resulted in significant glycogen depletion in both sexes (P less than 0.01). Males utilized approximately 50% more glycogen during the exercise bout than females (P less than 0.05). During the food-restricted 4-h recovery period, muscle glycogen was repleted significantly during the 1st h (P less than 0.05). Liver glycogen was not depleted as a result of the exercise bout, but fell during the first h of recovery (P less than 0.05) and remained low during the subsequent 3 h. The greater glycogen utilization in red and white fast-twitch muscle during exercise by males could represent a true sex difference but could also be attributable in part to the males having performed more work as a result of 20% greater body mass. We conclude that no sex difference was observed in the rates of muscle glycogen repletion after exercise or in liver glycogen metabolism during and after exercise, and rapid postexercise muscle glycogen repletion occurred at a time of accelerated liver glycogen depletion.  相似文献   

9.
Exercise training and sulfonylurea treatment, either individually or in combination, were evaluated for their effects on plasma glucose concentrations, oral glucose tolerance, and glucose clearance in the perfused hindquarter of diabetic rats. Female rats that were injected with streptozocin (45 mg/kg iv) and had plasma glucose concentrations between 11 and 25 mM were considered diabetic and divided into sedentary, glyburide-treated, exercise-trained, and glyburide-treated plus exercise-trained groups. The sedentary streptozocin-treated rats were severely diabetic, as indicated by elevated glucose concentrations, impaired insulin response during oral glucose tolerance tests, and lower rates of glucose clearance in hindlimb skeletal muscle. Neither 8 wk of exercise training nor 4 wk of glyburide treatment alone improved these parameters. In contrast, the diabetic rats that were both trained and treated with glyburide showed some improvement in glucose homeostasis, as evidenced by lower plasma glucose concentrations, an enhanced insulin response to an oral glucose load, and a decrease in the severity of skeletal muscle insulin resistance compared with the diabetic controls. These data suggest that glyburide treatment or exercise training alone does not alter glucose homeostasis in severely insulin-deficient diabetic rats; however, the combination of exercise training and glyburide treatment may interact to improve glucose homeostasis in these animals.  相似文献   

10.
Glycogen is the main store of readily energy in skeletal muscle and plays a key role in muscle function, demonstrated by the inability to sustain prolonged high-intensity exercise upon depletion of these glycogen stores. With prolonged exercise, glycogen depletion occurs and 5′-AMP-activated protein kinase (AMPK), a potent regulator of muscle metabolism and gene expression, is activated promoting molecular signalling that increases glucose uptake by muscular skeletal cells. The aim of this study was primarily to determine the effect of ultra-endurance exercise on muscle glycogen reserves and secondly to verify the influence of this type of exercise on AMPK protein expression. Twenty-four male Wistar rats, 60 days old, were divided into four experimental groups: sedentary, sedentary exhausted (SE), endurance trained (T) and endurance trained exhausted (TE). The animals ran for 10 to 90 min/day, 5 days/week, for 12 weeks to attain trained status. Rats were killed immediately after the exhaustion protocol, which consisted of running on a treadmill (at approximately 60 % V max until exhaustion). Optical density of periodic acid-Schiff was detected and glycogen depletion observed predominantly in type I muscle fibres of the TE group and in both type I and II muscle fibres in the SE group. Plasma glucose decreased only in the TE group. Hepatic glycogen was increased in T group and significantly depleted in TE group. AMPK protein expression was significantly elevated in TE and T groups. In conclusion, acute exhaustive ultra-endurance exercise promoted muscle glycogen depletion. It seems that total AMPK protein and gene expression is more influenced by status training.  相似文献   

11.
Exercise and exhaustion effects on glycogen synthesis pathways   总被引:1,自引:0,他引:1  
Gunderson, Hans, Nadja Wehmeyer, Diane Burnett, John Nauman,Cynthia Hartzell, and Scott Savage. Exercise and exhaustion effects on glycogen synthesis pathways. J. Appl.Physiol. 81(5): 2020-2026, 1996.FemaleSprague-Dawley rats were infused with [1-13C]glucose tomeasure the effect of endurance training and the effect of variousmetabolic conditions on pathways of hepatic glycogen synthesis. Fourmetabolic states [sedentary (S), trained (T), sedentary exhausted(SE), and trained exhausted (TE)] were studied. T and TE ratswere trained on a motor-driven treadmill (30 m/min, 15% grade, 1.0 h/day, 5 days/wk) for 8-10 wk. After a 24-h fast, SE and TE ratswere run to exhaustion (sedentary average = 78 min, trained average = 155 min) at a training pace and immediately infused with labeledglucose for 2 h. S and T rats were infused after a 24-h fast. Afterinfusion, tissues were removed and glycogen was isolated and hydrolyzedto glucose. The glucose was measured for distribution of13C by using nuclear magneticresonance. Glycogen was synthesized predominantly by the indirectpathway for all metabolic states, indicating that infused glucose wasfirst metabolized primarily in the peripheral tissue. Thedirect-pathway utilization was greater in rested S than in rested Tanimals (30 vs. 14%); however, for exhausted animals, the trained useof the direct pathway was greater (22 vs. 9%). Both TE and rested Tanimals utilize the indirect pathway a comparable amount. Sedentaryanimals, on the other hand, dramatically decreased utilization of thedirect pathway, with exhaustive exercise changing from 30 to 9%. Theresults indicate that endurance training modifies glucose utilizationduring glycogen synthesis after fasting and exhaustive exercise.

  相似文献   

12.
The purpose of this investigation was to examine the relationship between an exercise program and fetal development to determine whether training could influence insulin sensitivity in the pregnant rat. Prior to impregnation one group of animals was exercise trained on a Quinton shock-stimulus rodent treadmill. The exercised group was trained to run 5 days/wk, for 2.0 h/day at 31 m/min up an 8 degree incline for 8 wk before mating. Following mating the training intensity was reduced to 27 m/min up a 5 degree incline, and the exercise period decreased to 1 h/day. On day 19 of gestation, 24 h postexercise for the trained mothers, the animals were killed in the fed state and the parametrial fat pads were removed. The parametrial depot of the trained mother was smaller than the sedentary control dam. This was due to a change in cell size and did not involve alterations in cell number. Isolated adipocytes of the parametrial fat pads were used to measure the rates of 2-deoxy-D-[3H]glucose uptake and D-[1-14C]glucose oxidation to 14CO2. The results indicated that the adipocytes from the dam trained prior to and during pregnancy were significantly (P less than 0.05) more responsive to insulin than those of animals remaining sedentary during the same period. At the maximal insulin concentration tested, the fat cells from trained mothers were able to take up and metabolize approximately twice as much glucose as the sedentary control dams. However, the increase in insulin responsiveness induced by the training program did not match the changes observed in trained nonpregnant rats of prior investigations.  相似文献   

13.
In situ muscle stimulation in trained and untrained rats was used to reevaluate whether adaptations induced by endurance exercise training result in decreased lactate production by contracting muscles. The gastrocnemius-plantaris-soleus muscle group was stimulated to perform isotonic contractions. After 3 min of stimulation with 100-ms trains at 50 Hz at 60/min, the increases in lactate concentration in the plantaris, soleus, and fast-twitch red muscle (deep portion of lateral head of gastrocnemius) were only approximately 50% as great in trained as in sedentary rats. In the predominantly fast-twitch white superficial portion of the medial head of the gastrocnemius the increase in lactate concentration was 28% less in the trained than in the sedentary group. The decreases in muscle glycogen concentration seen after 3 min of stimulation at 60 trains/min were smaller in the trained than in the untrained group. The reduction in lactate accumulation that occurred in the different muscles in response to training was roughly proportional to the degree of glycogen sparing. These results show that endurance training induces adaptations that result in a slower production of lactate by muscle during contractile activity.  相似文献   

14.
This study had the following objectives: 1) to determine whether diabetic rats could increase muscle mass due to a physiological manipulation (chronic resistance exercise), 2) to determine whether exercise training status modifies the effect of the last bout of exercise on elevations in rates of protein synthesis, and 3) to determine whether chronic resistance exercise alters basal glycemia. Groups consisted of diabetic or nondiabetic rats that performed progressive resistance exercise for 8 wk, performed acute resistance exercise, or remained sedentary. Arterial plasma insulin in diabetic groups was reduced by about one-half (P < 0.05) compared with nondiabetic groups. Soleus and gastrocnemius-plantaris complex muscle wet weights were lower because of diabetes, but in response to chronic exercise these muscles hypertrophied in diabetic (0.028 +/- 0.003 vs. 0.032 +/- 0.0015 g/cm for sedentary vs. exercised soleus and 0.42 +/- 0.068 vs. 0.53 +/- 0.041 g/cm for sedentary vs. exercised gastrocnemius-plantaris, both P < 0.05) but not in nondiabetic (0.041 +/- 0.0026 vs. 0.042 +/- 0.003 g/cm for sedentary vs. exercised soleus and 0.72 +/- 0.015 vs. 0.69 +/- 0.013 g/cm for sedentary vs. exercised gastrocnemius-plantaris) rats when muscle weight was expressed relative to tibial length or body weight (data not shown). Another group of diabetic rats that lifted heavier weights showed muscle hypertrophy. Rates of protein synthesis were higher in red gastrocnemius in chronically exercised than in sedentary rats: 155 +/- 11 and 170 +/- 7 nmol phenylalanine incorporated x g muscle(-1) x h(-1) in exercised diabetic and nondiabetic rats vs. 110 +/- 14 and 143 +/- 7 nmol phenylalanine incorporated x g muscle(-1) x h(-1) in sedentary diabetic and nondiabetic rats. These elevations, however, were lower than in acutely exercised (but untrained) rats: 176 +/- 15 and 193 +/- 8 nmol phenylalanine incorporated x g muscle(-1) x h(-1) in diabetic and nondiabetic rats. Finally, chronic exercise training in diabetic rats was associated with reductions in basal glycemia, and such reductions did not occur in sedentary diabetic groups. These data demonstrate that, despite lower circulating insulin concentrations, diabetic rats can increase muscle mass in response to a physiological stimulus.  相似文献   

15.
To investigate the alterations of glucose homeostasis and variables of the insulin‐like growth factor‐1 (IGF‐1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg?1 b.w.). Training program consisted of swimming 5 days week?1, 1 h day?1, during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF‐1, and IGF binding protein‐3 (IGFBP‐3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF‐1 content. Diabetes decreased serum GH, IGF‐1, IGFBP‐3, liver glycogen, and cerebellum IGF‐1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF‐1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF‐1 concentrations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The effect of selective vs. nonselective beta-blockade on fast-twitch [extensor digitorum longus (EDL)] and slow-twitch [soleus (SOL)] muscle enzyme activities following endurance training were characterized. Citrate synthase (CS), lactate dehydrogenase (LDH), and beta-hydroxyacyl-CoA dehydrogenase (HAD) activities were compared in SOL and EDL muscles of trained (T), metoprolol-trained (MT), propranolol-trained (PT), and sedentary (C) rats. Following 8 wk of treadmill running (1 h/day, 5 days/wk at approximately 30 m/min), LDH activity was depressed approximately 20% (P less than 0.05) in both SOL and EDL in only the PT rats, indicating inhibition of beta 2-mediated anaerobic glycolysis. EDL CS activity was similarly elevated in all three trained groups compared with sedentary controls. In SOL muscle, however, a drug attenuation effect was observed so that CS activity was increased only in the T (P less than 0.01) and MT (P less than 0.05) groups. HAD enzyme activity was increased somewhat (P less than 0.10) in SOL muscle in only the T group, but more so (P less than 0.05) in EDL in all three trained groups. The above findings suggest a training-induced selectivity effect not only with respect to beta 1-vs. beta 1-beta 2-blockers, but also with respect to muscle fiber type.  相似文献   

17.
The present study was undertaken to determine the effects of endurance training on glycogen kinetics during exercise. A new model describing glycogen kinetics was applied to quantitate the rates of synthesis and degradation of glycogen. Trained and untrained rats were infused with a 25% glucose solution with 6-3H-glucose and U-14C-lactate at 1.5 and 0.5 μCi · min−1 (where 1 Ci = 3.7 × 1010 Bq), respectively, during rest (30 min) and exercise (60 min). Blood samples were taken at 10-min intervals starting just prior to isotopic infusion, until the cessation of exercise. Tissues harvested after the cessation of exercise were muscle (soleus, deep, and superficial vastus lateralis, gastrocnemius), liver, and heart. Tissue glycogen was quantitated and analyzed for incorporation of 3H and 14C via liquid scintillation counting. There were no net decreases in muscle glycogen concentration from trained rats, whereas muscle glycogen concentration decreased to as much as 64% (P < 0.05) in soleus in muscles from untrained rats after exercise. Liver glycogen decreased in both trained (30%) and untrained (40%) rats. Glycogen specific activity increased in all tissues after exercise indicating isotope incorporation and, thus, glycogen synthesis during exercise. There were no differences in muscle glycogen synthesis rates between trained and untrained rats after exercise. However, training decreased muscle glycogen degradation rates in total muscle (i.e., the sum of the degradation rates of all of the muscles sampled) tenfold (P < 0.05). We have applied a model to describe glycogen kinetics in relation to glucose and lactate metabolism during exercise in trained and untrained rats. Training significantly decreases muscle glycogen degradation rates during exercise. Accepted: 22 May 1998  相似文献   

18.
This study determined whether rates of protein synthesis increase after acute resistance exercise in skeletal muscle from severely diabetic rats. Previous studies consistently show that postexercise rates of protein synthesis are elevated in nondiabetic and moderately diabetic rats. Severely diabetic rats performed acute resistance exercise (n = 8) or remained sedentary (n = 8). A group of nondiabetic age-matched rats served as controls (n = 9). Rates of protein synthesis were measured 16 h after exercise. Plasma glucose concentrations were >500 mg/dl in the diabetic rats. Rates of protein synthesis (nmol phenylalanine incorporated. g muscle(-1). h(-1), means +/- SE) were not different between exercised (117 +/- 7) and sedentary (106 +/- 9) diabetic rats but were significantly (P < 0.05) lower than in sedentary nondiabetic rats (162 +/- 9) and in exercised nondiabetic rats (197 +/- 7). Circulating insulin concentrations were 442 +/- 65 pM in nondiabetic rats and 53 +/- 11 and 72 +/- 19 pM in sedentary and exercised diabetic rats, respectively. Plasma insulin-like growth factor I concentrations were reduced by 33% in diabetic rats compared with nondiabetic rats, and there was no difference between exercised and sedentary diabetic rats. Muscle insulin-like growth factor I was not affected by resistance exercise in diabetic rats. The results show that there is a critical concentration of insulin below which rates of protein synthesis begin to decline in vivo. In contrast to previous studies using less diabetic rats, severely diabetic rats cannot increase rates of protein synthesis after acute resistance exercise.  相似文献   

19.
Female rats were initially divided into a sedentary or an exercise group that was trained by treadmill running to a final work rate of 31 m/min, 100 min/day, for 13-18 wk. During the last 12 days of training each of these groups were further subdivided into groups that received daily subcutaneous injections of cortisol acetate (CA) (100 mg/kg body wt) or the vehicle (1% carboxymethyl cellulose). Exercise prevented approximately 40% of the gastrocnemius muscle weight loss due to CA treatment. Training did not influence glucocorticoid cytosol-receptor binding concentrations, using [3H]triamcinolone acetonide (TA) as the labeled glucocorticoid in any of the skeletal muscle types investigated. TA-receptor binding capacities were depleted by the multiple injections but were higher in the red fiber types of the CA-treated trained than those in the CA-treated sedentary animals. In a second series of experiments in which receptor depletion and repletion rates were studied using a single injection of cortisol, TA binding capacities 2 h after the cortisol injection were higher in slow-twitch red soleus muscles of trained as compared with sedentary rats (36.4 +/- 2.0 vs. 26.8 +/- 2.5 fmol/mg protein). Similar patterns of TA binding were also observed at 2 h between trained and sedentary animals in the fast-twitch red muscle types, whereas no training related differences were observed in white muscle types. Total and free serum cortisol concentrations also returned to base-line values faster in the trained animals following the single injection protocol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We examined the oxidative and antioxidant enzyme activities in respiratory and locomotor muscles in response to endurance training in young and aging rats. Young adult (4-mo-old) and old (24-mo-old) female Fischer 344 rats were divided into four groups: 1) young trained (n = 12), 2) young untrained (n = 12), 3) old trained (n = 10), and 4) old untrained (n = 6). Both young and old endurance-trained animals performed the same training protocol during 10 wk of continuous treadmill exercise (60 min/day, 5 days/wk). Compared with young untrained animals, the young trained group had significantly elevated (P less than 0.05) activities of 3-hydroxyacyl-CoA dehydrogenase (HADH), glutathione peroxidase (GPX), and citrate synthase (CS) in both the costal diaphragm and the plantaris muscle. In contrast, training had no influence (P greater than 0.05) on the activity of lactate dehydrogenase within the costal diaphragm in young animals. In the aging animals, training did not alter (P greater than 0.05) activities of CS, HADH, GPX, or lactate dehydrogenase in the costal diaphragm but significantly (P less than 0.05) increased CS, HADH, and GPX activities in the plantaris muscle. Furthermore, training resulted in higher activities of CS and HADH in the intercostal muscles in the old trained than in the old untrained animals. Finally, activities of CS, HADH, and GPX were significantly (P less than 0.05) lower in the plantaris in the old untrained than in the young untrained animals; however, CS, HADH, and GPX activities were greater (P less than 0.05) in the costal diaphragm in the old sedentary than in the young untrained animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号