首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PPO (protoporphyrinogen IX oxidase) catalyses the flavin-dependent six-electron oxidation of protogen (protoporphyrinogen IX) to form proto (protoporphyrin IX), a crucial step in haem and chlorophyll biosynthesis. The apparent K(m) value for wild-type tobacco PPO2 (mitochondrial PPO) was 1.17 muM, with a V(max) of 4.27 muM.min(-1).mg(-1) and a catalytic activity k(cat) of 6.0 s(-1). Amino acid residues that appear important for substrate binding in a crystal structure-based model of the substrate docked in the active site were interrogated by site-directed mutagenesis. PPO2 variant F392H did not reveal detectable enzyme activity indicating an important role of Phe(392) in substrate ring A stacking. Mutations of Leu(356), Leu(372) and Arg(98) increased k(cat) values up to 100-fold, indicating that the native residues are not essential for establishing an orientation of the substrate conductive to catalysis. Increased K(m) values of these PPO2 variants from 2- to 100-fold suggest that these residues are involved in, but not essential to, substrate binding via rings B and C. Moreover, one prominent structural constellation of human PPO causing the disease variegate porphyria (N67W/S374D) was successfully transferred into the tobacco PPO2 background. Therefore tobacco PPO2 represents a useful model system for the understanding of the structure-function relationship underlying detrimental human enzyme defects.  相似文献   

2.
Variegate porphyria is inherited as an autosomal dominant disease with variable penetrance. It is characterized clinically by photocutaneous sensitivity and acute neurovisceral attacks, and biochemically by abnormal porphyrin excretion in the urine and feces. While the world-wide incidence of variegate porphyria is relatively low, in South Africa it is one of the most common genetic diseases in humans. Due to the large number of patients with variegate porphyria in South Africa, and the fact that variegate porphyria is representative of both the so-called "acute" and the "photocutaneous" porphyrias, it would be valuable to have an animal model in which to study the disease. In this study we have produced a mouse model of "South African" variegate porphyria with the R59W mutation in C57/BL6 mice via targeted gene replacement. Hepatic protoporphyrinogen oxidase activity was reduced by approximately 50% in mice heterozygous for the mutation. Urine and fecal samples from these mice, in the absence of exogenous inducers of hepatic haem synthesis, contain elevated concentrations of porphyrins and porphyrin precursors in a pattern similar to that found in human variegate porphyric subjects. Bypassing the rate-limiting step in haem biosynthesis by feeding 5-aminolevulinic acid to these mice, results in an accentuated porphyrin excretory pattern characteristic of the variegate porphyric phenotype and urinary porphobilinogen is increased significantly. This initial characterization of these mice suggest that they are a good model for variegate porphyria at the biochemical level.  相似文献   

3.
Molecular basis of acute intermittent porphyria   总被引:2,自引:0,他引:2  
Acute intermittent porphyria is an inherited disease of haem biosynthesis that results from mutation of the gene for the enzyme porphobilinogen deaminase. Many different mutations have been located throughout the gene. The three-dimensional structure of the enzyme helps in understanding how these mutations lead to inactivation even when, in some cases, the mutated product is abundant and folded correctly.  相似文献   

4.
The porphyrias arise from predominantly inherited catalytic deficiencies of specific enzymes in heme biosynthesis. All genes encoding these enzymes have been cloned and several mutations underlying the different types of porphyrias have been reported. Traditionally, the diagnosis of porphyria is made on the basis of clinical symptoms, characteristic biochemical findings, and specific enzyme assays. In some cases however, these diagnostic tools reveal overlapping findings, indicating the existence of dual porphyrias with two enzymes of heme biosynthesis being deficient simultaneously. Recently, it was reported that the so-called Chester porphyria shows features of both variegate porphyria and acute intermittent porphyria. Linkage analysis revealed a novel chromosomal locus on chromosome 11 for the underlying genetic defect in this disease, suggesting that a gene that does not encode one of the enzymes of heme biosynthesis might be involved in the pathogenesis of the porphyrias. After excluding candidate genes within the linkage interval, we identified a nonsense mutation in the porphobilinogen deaminase gene on chromosome 11q23.3, which harbors the mutations causing acute intermittent porphyria, as the underlying genetic defect in Chester porphyria. However, we could not detect a mutation in the coding or the promotor region of the protoporphyrinogen oxidase gene that is mutated in variegate porphyria. Our results indicate that Chester porphyria is neither a dual porphyria, nor a separate type of porphyria, but rather a variant of acute intermittent porphyria. Further, our findings largely exclude the possibility that a hitherto unknown gene is involved in the pathogenesis of the porphyrias.  相似文献   

5.
The haem biosynthesis pathway continues to provide surprises, from the first enzyme, 5-aminolaevulinic acid synthase, the mRNA of which contains an iron-responsive element, to the last, ferrochelatase, that contains an iron sulphur cluster. 5-Aminolaevulinate dehydratases from animals are zinc-dependent enzymes while those from plants require magnesium. The first X-ray structure of a haem synthesis enzyme, porphobilinogen deaminase, has not only yielded clues about the mechanism of tetrapyrrole assembly but has also provided insight into the molecular basis of the human disease acute intermittent porphyria. Evidence is growing to suggest that a previously unsuspected alternative haem pathway may exist.  相似文献   

6.
Protoporphyrinogen IX oxidase (PPO), the last common enzyme of heme and chlorophyll biosynthesis, catalyses the oxidation of protoporphyrinogen IX to protoporphyrin IX, with FAD as cofactor. Among PPO, Bacillus subtilis PPO (bsPPO) is unique because of its broad substrate specificity and resistance to inhibition by diphenylethers. Identification of the activity of bsPPO would help us to understand the catalysis and resistance mechanisms. Based on the modeling and docking studies, we found that Y366 site in bsPPO was adjacent to substrate and FAD. In order to evaluate the functional role of this site, three mutants Y366A Y366E and Y366H were cloned and kinetically characterized. The efficiency of catalysis for Y366A and Y366H reduced to 10% of the wild-type enzyme’s activity, while Y366E just retained 1%. Y366E shows large resistance (K i = 153.94 μM) to acifluorfen. Molecular docking was carried out to understand the structure and functional relationship of PPO. The experimental results from the site-directed mutagenesis are consistent with the computational studies. The residue at position 366 is seemed to be responsible for substrate binding and catalysis and involved in herbicide resistance of bsPPO.  相似文献   

7.
The terminal three steps in haem biosynthesis are the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX, followed by the six-electron oxidation of protoporphyrinogen to protoporphyrin IX, and finally the insertion of ferrous iron to form haem. Interestingly, Nature has evolved distinct enzymic machinery to deal with the antepenultimate (coproporphyrinogen oxidase) and penultimate (protoporphyrinogen oxidase) steps for aerobic compared with anaerobic organisms. The terminal step is catalysed by the enzyme ferrochelatase. This enzyme is clearly conserved with regard to a small set of essential catalytic residues, but varies significantly with regard to size, subunit composition, cellular location and the presence or absence of a [2Fe-2S] cluster. Coproporphyrinogen oxidase and protoporphyrinogen oxidase are reviewed with regard to their enzymic and physical characteristics. Ferrochelatase, which is the best characterized of these three enzymes, will be described with particular emphasis paid to what has been learned from the crystal structure of the Bacillus subtilis and human enzymes.  相似文献   

8.
Soybean seed coat peroxidase (SBP) is a peroxidase with extraordinary stability and catalytic properties. It belongs to the family of class III plant peroxidases that can oxidize a wide variety of organic and inorganic substrates using hydrogen peroxide. Because the plant enzyme is a heterogeneous glycoprotein, SBP was produced recombinant in Escherichia coli for the present crystallographic study. The three-dimensional structure of SBP shows a bound tris(hydroxymethyl)aminomethane molecule (TRIS). This TRIS molecule has hydrogen bonds to active site residues corresponding to the residues that interact with the small phenolic substrate ferulic acid in the horseradish peroxidase C (HRPC):ferulic acid complex. TRIS is positioned in what has been described as a secondary substrate-binding site in HRPC, and the structure of the SBP:TRIS complex indicates that this secondary substrate-binding site could be of functional importance. SBP has one of the most solvent accessible delta-meso haem edge (the site of electron transfer from reducing substrates to the enzymatic intermediates compound I and II) so far described for a plant peroxidase and structural alignment suggests that the volume of Ile74 is a factor that influences the solvent accessibility of this important site. A contact between haem C8 vinyl and the sulphur atom of Met37 is observed in the SBP structure. This interaction might affect the stability of the haem group by stabilisation/delocalisation of the porphyrin pi-cation of compound I.  相似文献   

9.
Summary The final step in heme synthesis is catalyzed by the mitochondrial enzyme, ferrochelatase. Characterization of this enzyme has been complicated by a number of factors including the dependence of enzyme activity on lipids. Purification of ferrochelatase from rat and bovine sources has been achieved only relatively recently using blue Sepharose CL-6B chromatography. When 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) is given to animals, it produces a hepatic porphyria resembling human variegate porphyria thus providing an experimental system in which to study this disease. DDC has been found to cause the accumulation of a green pigment, identified as N-methyl protoporphyrin IX (N-MePP), which is a potent inhibitor of ferrochelatase. The source of the N-methyl substituent of N-MePP was found to be the 4-methyl group of DDC. Considerable evidence indicates that the protoporphyrin IX moiety of N-MePP originates from the heme moiety of cytochrome P-450 and that DDC is a suicide substrate for this hemoprotein. Some studies suggest that cytochrome P-450 isozymes differ in their susceptibility to destruction by DDC and its 4-alkyl analogues. Griseofulvin has also been reported to inhibit hepatic ferrochelatase in rodents but not in the 17-day old chick embryo nor in hepatocyte culture systems. Thus, the mechanism by which griseofulvin produces an experimental porphyria in chick embryo liver cell culture is different from that for rodents.  相似文献   

10.
The porphyrias are a group of inherited metabolic disorders of heme biosynthesis which result from a partial deficiency in one of its seven specific enzymes, after its first and rate limiting enzyme, delta-aminolevulinic acid synthetase. They can be classified on the basis of their clinical manifestations into cutaneous, acute and mixed disorders. Acute intermittent porphyria (AIP) is the most common type of hepatic acute porphyrias, inherited as an autosomal dominant trait, caused by a defect in the gene which codifies for the heme enzyme porphobilinogen deaminase. Its prevalence in the Argentinean population is about 1:125,000. A partial deficiency in another enzyme, protoporphyrinogen oxidase, produces variegate porphyria (VP), the second acute porphyria most frequent in the Argentinean population (1:600,000). Here, we review all the mutations we have found in 46 AIP and 9 VP unrelated Argentinean patients. To screen for mutations in symptomatic patients, we have proposed a geneticresearch strategy.  相似文献   

11.
Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX) must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT), the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix.  相似文献   

12.
Fms1 is a rate-limiting enzyme for the biosynthesis of pantothenic acid in yeast. Fms1 has polyamine oxidase (PAO) activity, which converts spermine into spermidine and 3-aminopropanal. The 3-aminopropanal is further oxidized to produce beta-alanine, which is necessary for the biosynthesis of pantothenic acid. The crystal structures of Fms1 and its complex with the substrate spermine have been determined using the single-wavelength anomalous diffraction (SAD) phasing method. Fms1 consists of an FAD-binding domain, with Rossmann fold topology, and a substrate-binding domain. The active site is a tunnel located at the interface of the two domains. The substrate spermine binds to the active site mainly via hydrogen bonds and hydrophobic interactions. In the complex, C11 but not C9 of spermine is close enough to the catalytic site (N5 of FAD) to be oxidized. Therefore, the products are spermidine and 3-aminopropanal, rather than 3-(aminopropyl) 4-aminobutyraldehyde and 1,3-diaminoprone.  相似文献   

13.
The haem oxygenase (HO) enzyme catalyses the oxidation of haem to biliverdin IX alpha, CO and Fe(2+), and performs a wide variety of roles in Nature, including degradation of haem from haemoglobin, iron acquisition and phycobilin biosynthesis. In plants, HOs are required for the synthesis of the chromophore of the phytochrome family of photoreceptors. There are four HO genes in the Arabidopsis genome. Analysis of a mutant deficient in HO1 (the hy1 mutant) has demonstrated that this plastid-localized protein is the major HO in the phytochrome chromophore synthesis pathway. HO2 may also have a minor role in this pathway, but our understanding of the divergent roles of this small gene family is still far from complete.  相似文献   

14.
The effects of various protoporphyrinogen oxidase (PPOX) mutations responsible for variegate porphyria (VP), the roles of the arginine-59 residue and the glycines in the conserved flavin binding site, in catalysis and/or cofactor binding, were examined. Wild-type recombinant human PPOX and a selection of mutants were generated, expressed, purified and partially characterised. All mutants had reduced PPOX activity to varying degrees. However, the activity data did not correlate with the ability/inability to bind flavin. The positive charge at arginine-59 appears to be directly involved in catalysis and not in flavin-cofactor binding alone. The K(m)s for the arginine-59 mutants suggested a substrate-binding problem. T(1/2) indicated that arginine-59 is required for the integrity of the active site. The dominant alpha-helical content was decreased in the mutants. The degree of alpha-helix did not correlate linearly with T(1/2) nor T(m) values, supporting the suggestion that arginine-59 is important for catalysis at the active site. Examination of the conserved dinucleotide-binding sequence showed that substitution of glycine in codon 14 was less disruptive than substitutions in codons 9 and 11. Ultraviolet melting curves generally showed a two-state transition suggesting formation of a multi-domain structure. All mutants studied were more resistant to thermal denaturation compared to wild type, except for R168C.  相似文献   

15.
Protoporphyrinogen IX oxidase, a monotopic membrane protein, which catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX in the heme/chlorophyll biosynthetic pathway, is distributed widely throughout nature. Here we present the structure of protoporphyrinogen IX oxidase from Myxococcus xanthus, an enzyme with similar catalytic properties to human protoporphyrinogen IX oxidase that also binds the common plant herbicide, acifluorfen. In the native structure, the planar porphyrinogen substrate is mimicked by a Tween 20 molecule, tracing three sides of the macrocycle. In contrast, acifluorfen does not mimic the planarity of the substrate but is accommodated by the shape of the binding pocket and held in place by electrostatic and aromatic interactions. A hydrophobic patch surrounded by positively charged residues suggests the position of the membrane anchor, differing from the one proposed for the tobacco mitochondrial protoporphyrinogen oxidase. Interestingly, there is a discrepancy between the dimerization state of the protein in solution and in the crystal. Conserved structural features are discussed in relation to a number of South African variegate porphyria-causing mutations in the human enzyme.  相似文献   

16.
1. The importance of the early depletion of liver haem in the production of porphyria is discussed and further supporting evidence is presented from experiments with tryptophan pyrrolase, under conditions of exacerbation of experimental porphyria by therapeutic and other agents. 2. In addition to the early depletion of pyrrolase haem by porphyrogens, a further depletion is produced when rats are given a porphyrogen plus an analogue or one of 19 drugs known to exacerbate the human disease. 3. Non-exacerbators of human porphyrias do not cause a further early depletion of pyrrolase haem and it is suggested that this system may be used as a screening test for possible exacerbation of the disease by new and existing drugs. 4. A similar further early depletion of haem is produced by combined administration of lead acetate plus phenobarbitone, thus suggesting that the depletion is a more general phenomenon in experimental porphyria. 5. The relationship between tryptophan pyrrolase and the regulatory free haem is discussed. It is suggested that pyrrolase may play an important role in the regulation of haem biosynthesis.  相似文献   

17.
Biosynthesis and functional role of haem O and haem A   总被引:8,自引:0,他引:8  
Haem O and/or haem A are specifically synthesized for the haem-copper respiratory oxidases. A 17-carbon hydroxyethylfarnesyl chain at the pyrrole ring A of the haems seems essential for catalytic functions at the oxygen-reduction site. The discovery of haem O in the cytochrome bo complex from Escherichia coli was a breakthrough in the studies on haem A biosynthesis. Molecular biological and biochemical studies in the past three years demonstrated that the cyoE/ctaB/COX10 genes are indispensable for functional expression of the terminal oxidases and encode a novel enzyme haem O synthase (protohaem IX farnesyltransferase). It has recently been suggested that the ctaA gene adjacent to the ctaB-ctaCDEF gene cluster in Bacillus subtilis encodes haem A synthase (haem O monooxygenase). In this article, we review current knowledge of the genes for haem O and haem A biosyntheses, the location and regulation of haem O synthase, the possible enzymatic mechanism of farnesyl transfer to haem B and the possible roles of the farnesylated haems.  相似文献   

18.
Mutations in the human gene for the enzyme porphobilinogen deaminase give rise to an inherited disease of heme biosynthesis, acute intermittent porphyria. Knowledge of the 3-dimensional structure of human porphobilinogen deaminase, based on the structure of the bacterial enzyme, allows correlation of structure with gene organization and leads to an understanding of the relationship between mutations in the gene, structural and functional changes of the enzyme, and the symptoms of the disease. Most mutations occur in exons 10 and 12, often changing amino acids in the active site. Several of these are shown to be involved in binding the primer or substrate; none modifies Asp 84, which is essential for catalytic activity.  相似文献   

19.
20.
We have used an antisense expression technology in Arabidopsis based on the yeast GAL4/UAS transactivation system (Guyer et al., Genetics, 1998; 149:633-639) to reduce levels of protoporphyrinogen IX oxidase (PPO), the last common enzyme of the biosynthesis of the haem group and chlorophyll. Plants expressing the antisense PPO gene presented growth alterations and their leaves showed necrotic lesions that appeared similar to lesions characteristic of the pathogen-induced hypersensitive reaction, and seen in the so-called lesion-mimic mutants. Plants expressing the antisense gene also had high endogenous salicylic acid levels, constitutive expression of the PR-1 gene, and were resistant to Peronospora parasitica, consistent with the activation of systemic acquired resistance (SAR). Treatment of wild-type plants with sublethal concentrations of herbicides that inhibit PPO also induced defence responses that conferred enhanced tolerance to P. parasitica. This effect was not observed in NahG and nim1 plants, which are compromised in their ability to activate SAR. These results demonstrate that genetic or chemical disruption of a metabolic pathway can lead to the induction of a set of defence responses including activation of SAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号