首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geographic distributions of many taxonomic groups remain mostly unknown, hindering attempts to investigate the response of the majority of species on Earth to climate change using species distributions models (SDMs). Multi‐species models can incorporate data for rare or poorly‐sampled species, but their application to forecasting climate change impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North America derived from ensembles of single‐species models to those from a multi‐species modeling approach, Generalized Dissimilarity Modeling (GDM). We found that both single‐ and multi‐species models forecasted large changes in ant community composition in relatively warm environments. GDM predicted higher turnover than SDMs and across a larger contiguous area, including the southern third of North America and notably Central America, where the proportion of ants with relatively small ranges is high and where data limitations are most likely to impede the application of SDMs. Differences between approaches were also influenced by assumptions regarding dispersal, with forecasts being more similar if no‐dispersal was assumed. When full‐dispersal was assumed, SDMs predicted higher turnover in southern Canada than did GDM. Taken together, our results suggest that 1) warm rather than cold regions potentially could experience the greatest changes in ant fauna under climate change and that 2) multi‐species models may represent an important complement to SDMs, particularly in analyses involving large numbers of rare or poorly‐sampled species. Comparisons of the ability of single‐ and multi‐species models to predict observed changes in community composition are needed in order to draw definitive conclusions regarding their application to investigating climate change impacts on biodiversity.  相似文献   

2.
Different assembly processes may simultaneously affect local-scale variation of species composition in temperate old-growth forests. Ground layer species diversity reflects chance colonization and persistence of low-dispersal species, as well as fine-scale environmental heterogeneity. The latter depends on both purely abiotic factors, such as soil properties and topography, and factors primarily determined by overstorey structure, such as light availability. Understanding the degree to which plant diversity in old-growth forests is associated with structural heterogeneity and/or to dispersal limitation will help assessing the effectiveness of silvicultural practices that recreate old-growth patterns and structures for the conservation or restoration of plant diversity. We used a nested sampling design to assess fine-scale species turnover, i.e. the proportion of species composition that changes among sampling units, across 11 beech-dominated old-growth forests in Southern Europe. For each stand, we also measured a wide range of environmental and structural variables that might explain ground layer species turnover. Our aim was to quantify the relative importance of dispersal limitation in comparison to that of stand structural heterogeneity while controlling for other sources of environmental heterogeneity. For this purpose, we used multiple regression on distance matrices at the within-stand extent, and mixed effect models at the extent of the whole dataset. Species turnover was best predicted by structural and environmental heterogeneity, especially by differences in light availability and in topsoil nutrient concentration and texture. Spatial distances were significant only in four out of eleven stands with a relatively low explanatory power. This suggests that structural heterogeneity is a more important driver of local-scale ground layer species turnover than dispersal limitation in southern European old-growth beech forests.  相似文献   

3.
Species’ ranges are primarily limited by the physiological (abiotic) tolerance of the species, described by their fundamental niche. Additionally, demographic processes, dispersal, and interspecific interactions with other species are shaping species distributions, resulting in the realised niche. Understanding the complex interplay between these drivers is vital for making robust biodiversity predictions to novel environments. Correlative species distribution models have been widely used to predict biodiversity response but also remain criticised, as they are not able to properly disentangle the abiotic and biotic drivers shaping species’ niches. Recent developments have thus focussed on 1) integrating demography and dispersal into species distribution models, and on 2) integrating interspecific interactions. Here, I review recent demographic and multi‐species modelling approaches and discuss critical aspects of these models that remain underexplored in general and in respect to birds, for example, the complex life histories of birds and other animals as well as the scale dependence of interspecific interactions. I conclude by formulating modelling guidelines for integrating the abiotic and biotic processes that limit species’ ranges, which will help to disentangle the complex roles of demography, dispersal and interspecific interactions in shaping species niches. Throughout, I pinpoint complexities of avian life cycles that are critical for consideration in the models and identify data requirements for operationalizing the different modelling steps.  相似文献   

4.
The relative importance of dispersal limitation versus environmental filtering for community assembly has received much attention for macroorganisms. These processes have only recently been examined in microbial communities. Instead, microbial dispersal has mostly been measured as community composition change over space (i.e., distance decay). Here we directly examined fungal composition in airborne wind currents and soil fungal communities across a 40 000 km2 regional landscape to determine if dispersal limitation or abiotic factors were structuring soil fungal communities. Over this landscape, neither airborne nor soil fungal communities exhibited compositional differences due to geographic distance. Airborne fungal communities shifted temporally while soil fungal communities were correlated with abiotic parameters. These patterns suggest that environmental filtering may have the largest influence on fungal regional community assembly in soils, especially for aerially dispersed fungal taxa. Furthermore, we found evidence that dispersal of fungal spores differs between fungal taxa and can be both a stochastic and deterministic process. The spatial range of soil fungal taxa was correlated with their average regional abundance across all sites, which may imply stochastic dispersal mechanisms. Nevertheless, spore volume was also negatively correlated with spatial range for some species. Smaller volume spores may be adapted to long-range dispersal, or establishment, suggesting that deterministic fungal traits may also influence fungal distributions. Fungal life-history traits may influence their distributions as well. Hypogeous fungal taxa exhibited high local abundance, but small spatial ranges, while epigeous fungal taxa had lower local abundance, but larger spatial ranges. This study is the first, to our knowledge, to directly sample air dispersal and soil fungal communities simultaneously across a regional landscape. We provide some of the first evidence that soil fungal communities are mostly assembled through environmental filtering and experience little dispersal limitation.  相似文献   

5.
Aim To evaluate how factors acting at different spatial scales influence range limits in bird species of the Colombian Andes. Location Andes Mountains of Colombia. Methods We used Maxent , a climate envelope model (CEM), and environmental and geographic information to study range‐filling (i.e. the extent to which a species occurs in all the areas in which it is predicted to occur) in 70 range‐restricted bird species of the Colombian Andes. Environmental data were taken from the WorldClim database, and species occurrence data were taken from museum data collated by the BioMap project, an observational database, and the literature. We evaluated how climate and geographic barriers may shape range limits at two scales. Results At a broad extent (i.e. across the three main cordilleras within the Colombian Andes), we find that CEMs predict there to be suitable environmental conditions for particular species in regions where the species is absent, possibly as a result of dispersal limitation or biotic interactions. In contrast, at a finer scale (within a given cordillera), species generally occur across the entire area predicted to be suitable by a given CEM. Geographic discontinuities within cordilleras do not generally correspond to range limits; instead, range limits correspond to changes in environmental conditions. Main conclusions Our results suggest that different mechanisms influence the presence of species at different scales. Dispersal limitation, potentially combined with species interactions, may influence range limits at a broad extent (the entire Colombian Andes), while strong environmental gradients correspond to range limits at a finer scale (within a cordillera).  相似文献   

6.
Brouat C  Duplantier JM 《Oecologia》2007,152(4):715-720
Beta-diversity, or how species composition changes with geographical distance, has seldom been studied for different habitats. We present here quantitative estimates of the relationship between geographic distance and similarity of parasitic nematode communities in two closely related rodent host species that live in habitats with very different spatial configurations. In southeastern Senegal Mastomys natalensis lives exclusively inside human villages whereas M. erythroleucus is continuously distributed outside villages. Both host species and their gastro-intestinal nematodes were sampled on the same spatial scale. Beta-diversity was found to be higher in parasite communities of M. erythroleucus than in those of M. natalensis, and significantly related to geographic distance in this first species. Even on the local spatial scale studied, host dispersal limitation, and stochastic events, may affect species turnover in nematode communities of M. erythroleucus. In M. natalensis, no relationship was found between geographic distance and nematode community similarity, however, suggesting low host dispersal rates between habitat patches. Together with previous population genetic results, this study illustrates the need for different approaches with regard to dispersal in natural populations and its effect on biodiversity.  相似文献   

7.
Understanding range limits is critical to predicting species responses to climate change. Subtropical environments, where many species overlap at their range margins, are cooler, more light‐limited and variable than tropical environments. It is thus likely that species respond variably to these multi‐stressor regimes and that factors other than mean climatic conditions drive biodiversity patterns. Here, we tested these hypotheses for scleractinian corals at their high‐latitude range limits in eastern Australia and investigated the role of mean climatic conditions and of parameters linked to abiotic stress in explaining the distribution and abundance of different groups of species. We found that environmental drivers varied among taxa and were predominantly linked to abiotic stress. The distribution and abundance of tropical species and gradients in species richness (alpha diversity) and turnover (beta diversity) were best explained by light limitation, whereas minimum temperatures and temperature fluctuations best explained gradients in subtropical species, species nestedness and functional diversity. Variation in community structure (considering species composition and abundance) was most closely linked to the combined thermal and light regime. Our study demonstrates the role of abiotic stress in controlling the distribution of species towards their high‐latitude range limits and suggests that, at biogeographic transition zones, robust predictions of the impacts of climate change require approaches that account for various aspects of physiological stress and for species abundances and characteristics. These findings support the hypothesis that abiotic stress controls high‐latitude range limits and caution that projections solely based on mean temperature could underestimate species’ vulnerabilities to climate change.  相似文献   

8.
Understanding the forms that the geographic range limits of species take, their causes and their consequences are key issues in ecology and evolutionary biology. They are also topics on which understanding is advancing rapidly. This themed issue of Proc. R. Soc. B focuses on the wide variety of current research perspectives on the nature and determinants of the limits to geographic ranges. The contributions address important themes, including the roles and influences of dispersal limitation, species interactions and physiological limitation, the broad patterns in the structure of geographic ranges, and the fundamental question of why at some point species no longer evolve the ability to overcome the factors constraining their distributions and thus fail to continue to spread. In this introduction, these contributions are placed in the wider context of these broad themes.  相似文献   

9.
Aim We addressed the roles of environmental filtering, historical biogeography and evolutionary niche conservatism on the phylogenetic structure of tropical tree communities with the following questions. (1) What is the impact of mesoclimatic gradients and dispersal limitation on phylogenetic turnover and species turnover? (2) How does phylogenetic turnover between continents compare in intensity with the turnover driven by climatic gradients at a regional scale? (3) Are independent phylogenetic reconstructions of the mesoclimatic niche of clades congruent between continents? Location Panama Canal Watershed and Western Ghats (India), two anciently divergent biogeographic contexts but with comparable rainfall gradients. Methods Using floristic data for 50 1‐ha plots in each region, independent measures of phylogenetic turnover (ΠST) and species turnover (Jaccard) between plots were regressed on geographic and ecological distances. Mesoclimatic niches were reconstructed for each node of the phylogeny and compared between the two continents. Results (1) The phylogenetic turnover within each region is best explained by mesoclimatic differences (environmental filtering), while species turnover depends both on mesoclimatic differences and geographic distances (dispersal limitation). (2) The phylogenetic turnover between continents (ΠST = 0.009) is comparable to that caused by mesoclimatic gradients within regions (ΠST = 0.010) and both effects seem cumulative. (3) Independent phylogenetic reconstructions of the mesoclimatic niches were strongly correlated between the two continents (r = 0.61), despite the absence of shared species. Main conclusions Our results demonstrate a world‐wide deep phylogenetic signal for mesoclimatic niche within a biome, indicating that positive phylogenetic turnover at a regional scale reflects environmental filtering in plant communities.  相似文献   

10.
Understanding the mechanisms that govern the spatial patterns of species turnover (beta diversity) has been one of the fundamental issues in biogeography. Species turnover is generally recognized as strong in mountainous regions, but the way in which different processes (dispersal, niche, and isolation) have shaped the spatial turnover patterns in mountainous regions remains largely unexplored. Here, we explore the directional and elevational patterns of species turnover for nonvolant small mammals in the Hengduan Mountains of southwest China and distinguish the relative roles of geographic distance, environmental distance, and geographic isolation on the patterns. The spatial turnover was assessed using the halving distance (km), which was the geographic distance that halved the similarity (Jaccard similarity) from its initial value. The halving distance was calculated for the linear, logarithmic, and exponential regression models between Jaccard similarity and geographic distance. We found that the east–west turnover is generally faster than the south–north turnover for high‐latitudinal regions in the Hengduan Mountains and that this pattern corresponds to the geographic structure of the major mountain ranges and rivers that mainly extend in a south–north direction. There is an increasing trend of turnover toward the higher‐elevation zones. Most of the variation in the Jaccard similarity could be explained by the pure effect of geographic distance and the joint effects of geographic distance, environmental distance, and average elevation difference. Our study indicates that dispersal, niche, and isolation processes are all important determinants of the spatial turnover patterns of nonvolant small mammals in the Hengduan Mountains. The spatial configuration of the landscape and geographic isolation can strongly influence the rate of species turnover in mountainous regions at multiple spatial scales.  相似文献   

11.
Species ranges are shaped by both climatic factors and interactions with other species. The stress gradient hypothesis predicts that under physiologically stressful environmental conditions abiotic factors shape range edges while in less stressful environments negative biotic interactions are more important. Butterflies provide a suitable system to test this hypothesis since larvae of most species depend on biotic interactions with a specific set of host plants, which in turn can shape patterns of occurrence and distribution. Here we modelled the distribution of 92 butterfly and 136 host plant species with three different modelling algorithms, using distribution data from the Swiss biodiversity monitoring scheme at a 1 × 1 km spatial resolution. By comparing the ensemble prediction for each butterfly species and the corresponding host plant(s), we assessed potential constraints imposed by host plant availability on distribution of butterflies at their distributional limits along the main environmental gradient, which closely parallels an elevational gradient. Our results indicate that host limitation does not play a role at the lower limit. At the upper limit 50% of butterfly species have a higher elevational limit than their primary host plant, and 33% have upper elevational limits that exceed the limits of both primary and secondary hosts. We conclude that host plant limitation was not relevant to butterfly distributional limits in less stressful environments and that distributions are more likely limited by climate, land use or antagonistic biotic interactions. Obligatory dependency of butterflies on their host plants, however, seems to represent an important limiting factor for the distribution of some species towards the cold, upper end of the environmental gradient, suggesting that biotic factors can shape ranges in stressful environments. Thus, predictions by the stress gradient hypothesis were not always applicable.  相似文献   

12.
Ecuador has some of the greatest biodiversity in the world, sheltering global biodiversity hotspots in lowland and mountain regions. Climate change will likely have a major effect on these regions, but the consequences for faunal diversity and conservation remain unclear. To address this issue, we used an ensemble of eight species distribution models to predict future shifts and identify areas of high changes in species richness and species turnover for 201 mammals. We projected the distributions using two different climate change scenarios at the 2050 horizon and contrasted two extreme dispersal scenarios (no dispersal vs. full dispersal). Our results showed extended distributional shifts all over the country. For most groups, our results predicted that the current diversity of mammals in Ecuador would decrease significantly under all climate change scenarios and dispersal assumptions. The Northern Andes and the Amazonian region would remain diversity hotspots but with a significant decrease in the number of species. All predictions, including the most conservative scenarios in terms of dispersal and climate change, predicted major changes in the distribution of mammalian species diversity in Ecuador. Primates might be the most severely affected because they would have fewer suitable areas, compared with other mammals. Our work emphasizes the need for sound conservation strategies in Ecuador to mitigate the effects of climate change  相似文献   

13.
Understanding what governs community assembly and the maintenance of biodiversity is a central issue in ecology, but has been a continuing debate. A key question is the relative importance of habitat specialization (niche assembly) and dispersal limitation (dispersal assembly). In the middle of the Loess Plateau, northwestern China, we examined how species turnover in Liaodong oak (Quercus wutaishanica) forests differed between observed and randomized assemblies, and how this difference was affected by habitat specialization and dispersal limitation using variation partitioning. Results showed that expected species turnover based on individual randomization was significantly lower than the observed value (< 0.01). The turnover deviation significantly depended on the environmental and geographical distances (< 0.05). Environmental and spatial variables significantly explained approximately 40% of the species composition variation at all the three layers (< 0.05). However, their contributions varied among forest layers; the herb and shrub layers were dominated by environmental factors, whereas the canopy layer was dominated by spatial factors. Our results underscore the importance of synthetic models that integrate effects of both dispersal and niche assembly for understanding the community assembly. However, habitat specialization (niche assembly) may not always be the dominant process in community assembly, even under harsh environments. Community assembly may be in a trait‐dependent manner (e.g., forest layers in this study). Thus, taking more species traits into account would strengthen our confidence in the inferred assembly mechanisms.  相似文献   

14.
植物种群更新限制——从种子生产到幼树建成   总被引:8,自引:0,他引:8  
李宁  白冰  鲁长虎 《生态学报》2011,31(21):6624-6632
更新限制是指种子由于各种原因,不能够萌发并生长成幼树。它作为解释生物多样性的理论,一直受到国内外群落生态学家关注。从种源限制、传播限制和建成限制3个角度,对更新限制机制研究进展进行了综述。从种源限制而言,时空因素是影响植物种群更新限制的重要因素,因为植物结实量存在明显时空变化,造成植物更新个体出现明显的时空规律。从传播限制而言,传播数量、距离和食果动物行为均限制植物种群更新。数量上,缺乏有限传播者势必减少传播数量,但如果种子拥有较高质量,则能逃脱数量限制;距离上,植物更新个体显示出明显的Janzen-Connell格局,但传播距离趋向稳定,形成植物种群的进化稳定对策;食果动物行为上,不同传播者对更新贡献存在差异,捕食者直接降低更新,融入两类动物行为的模型更能反映食果动物对更新的限制。从建成限制而言,环境因子制约植物生长。小尺度下,微生境的好坏对于植物幼苗建成至关重要;大尺度下,植物提供较好的广告效应则能摆脱生境限制。将传播者行为、捕食者行为与幼苗的空间分布格局、种子传播机理模型等结合,建立植物更新限制机理模型应是更新限制未来的研究热点。选择稀有种和古老种为主题的长期更新限制研究,为种群恢复提供指导,也是未来重要研究方向。  相似文献   

15.
All species have limited geographic distributions; but the ecological and evolutionary mechanisms causing range limits are largely unknown. That many species’ geographic range limits are coincident with niche limits suggests limited evolutionary potential of marginal populations to adapt to conditions experienced beyond the range. We provide a test of range limit theory by combining population genetic analysis of microsatellite polymorphisms with a transplant experiment within, at the edge of, and 60 km beyond the northern range of a coastal dune plant. Contrary to expectations, lifetime fitness increased toward the range limit with highest fitness achieved by most populations at and beyond the range edge. Genetic differentiation among populations was strong, with very low, nondirectional gene flow suggesting range limitation via constraints to dispersal. In contrast, however, local adaptation was negligible, and a distance‐dependent decline in fitness only occurred for those populations furthest from home when planted beyond the range limit. These results challenge a commonly held assumption that stable range limits match niche limits, but also raise questions about the unique value of peripheral populations in expanding species’ geographical ranges.  相似文献   

16.
A recent test for the existence of suture zones in North America, based on hybrid zones studied since 1970, found support for only two of the 13 suture zones identified by Remington in 1968 (Swenson and Howard 2004). One limitation of that recent study was the relatively small number of hybrid zones available for mapping. In this study, we search for evidence of clustering of contact zones between closely related taxa using data not only from hybrid zones but from species range maps of trees, birds, and mammals and from the position of phylogeographic breaks within species. Digital geographic range maps and a geographic information system approach allowed for accurate and rapid mapping of distributional data. Areas of contact between closely related species and phylogeographic breaks within species clustered into areas characterized by common physiographic features or predicted by previously hypothesized glacial refugia. The results underscore the general importance of geographic barriers to dispersal (mountain chains) and climate change (periods of cooling alternating with periods of warming, which lead to the contraction and expansion of species ranges) in species evolution.  相似文献   

17.
预测物种的适生区对于物种资源的评估、保护以及生物多样性的管理非常重要。由于全球气候变化和人类的过度开发,冷水性无脊椎动物的衰减速度比在陆地和海洋生活的无脊椎动物都要高。目前关于中国淡水钩虾分布方面的研究很少,本研究基于103个地表淡水钩虾的不同分布位点和广布种湖泊钩虾Gammarus lacustris 23个不同分布位点以及32个环境因子数据,使用生态位模型(Maxent)预测了淡水钩虾和湖泊钩虾在我国的适生分布区域。结果显示淡水钩虾非常适合分布在我国的一些偏远山区,如长白山、太行山、横断山、天山、昆仑山和祁连山,而青藏高原的东部、西部边缘地区和南部分布地区、尼泊尔、不丹和朝鲜半岛也是淡水钩虾的潜在适生区域,但淡水钩虾在我国华南、华中和华北的平原地区分布却很少,其在我国的潜在分布区与-10℃和5℃1月平均气温线间的区域相似。淡水钩虾是典型的狭温性物种,在不适宜温度条件下很难存活,这可能也是限制其扩散和存活的关键性因素。  相似文献   

18.
Climate change and human-mediated dispersal are increasingly influencing species’ geographic distributions. Ecological niche models (ENMs) are widely used in forecasting species’ distributions, but are weak in extrapolation to novel environments because they rely on available distributional data and do not incorporate mechanistic information, such as species’ physiological response to abiotic conditions. To improve accuracy of ENMs, we incorporated physiological knowledge through Bayesian analysis. In a case study of the zebra mussel Dreissena polymorpha, we used native and global occurrences to obtain native and global models representing narrower and broader understanding of zebra mussel’ response to temperature. We also obtained thermal limit and survival information for zebra mussel from peer-reviewed literature and used the two types of information separately and jointly to calibrate native models. We showed that, compared to global models, native models predicted lower relative probability of presence along zebra mussel's upper thermal limit, suggesting the shortcoming of native models in predicting zebra mussel's response to warm temperature. We also found that native models showed improved prediction of relative probability of presence when thermal limit was used alone, and best approximated global models when both thermal limit and survival data were used. Our result suggests that integration of physiological knowledge enhances extrapolation of ENM in novel environments. Our modeling framework can be generalized for other species or other physiological limits and may incorporate evolutionary information (e.g. evolved thermal tolerance), thus has the potential to improve predictions of species’ invasive potential and distributional response to climate change.  相似文献   

19.
For several epiphyte species, dispersal limitation and metapopulation dynamics have been suggested. We studied the relative importance of local environmental conditions and spatial aggregation of species richness of facultative and obligate epiphytic bryophytes and lichens within two old‐growth forests in eastern Sweden. The effect of the local environment was analyzed using generalized linear models (GLM). We tested whether species richness was spatially structured by fitting variogram models to the residuals of the GLM. In addition, we analyzed the species‐area relationship (area=tree diameter). Different environmental variables explained the richness of different species groups (bryophytes vs lichens, specialists vs generalists, sexual vs asexual dispersal). In most groups, the total variation explained by environmental variables was higher than the variation explained by the spatial model. Spatial aggregation was more pronounced in asexually than in sexually dispersed species. Bryophyte species richness was only poorly predicted by area, and lichen species richness was not explained by area at all. Spatial aggregation may indicate effects of dispersal limitation and metapopulation dynamics on community species richness. Our results suggest that species groups differ in habitat requirements and dispersal abilities; there were indications that presence of species with different dispersal strategies is linked to the age of the host tree. Separate analyses of the species richness of species groups that differ in the degree of habitat specialization and dispersal ability give insights into the processes determining community species richness. The poor species‐area relationship, especially in lichens, may indicate species turnover rather than accumulation during the lifetime of the host tree. Epiphyte species extinctions may be mainly caused by deterministic processes, e.g. changes in habitat conditions as the host tree grows, ages and dies, rather than by stochastic population processes.  相似文献   

20.
Population genetics simulation models are useful tools to study the effects of demography and environmental factors on genetic variation and genetic differentiation. They allow for studying species and populations with complex life histories, spatial distribution and many other complicating factors that make analytical treatment impracticable. Most simulation models are individual‐based: this poses a limitation to simulation of very large populations because of the limits in computer memory and long computation times. To overcome these limitations, we propose an intermediate approach that allows modelling of very complex demographic scenarios, which would be intractable with analytical models, and removes the limitations imposed by large population size, which affect individual‐based simulation models. We implement this approach in a software package for the r environment, MetaPopGen. The innovative concept of this approach with respect to the other population genetic simulators is that it focuses on genotype numbers rather than on individuals. Genotype numbers are iterated through time by using random number generators for appropriate probabilistic distributions to reproduce the stochasticity inherent to Mendelian segregation, survival, dispersal and reproduction. Features included in the model are age structure, monoecious and dioecious (or separate sexes) life cycles, mutation, dispersal and selection. The model simulates only one locus at a time. All demographic parameters can be genotype‐, sex‐, age‐, deme‐ and time‐dependent. MetaPopGen is therefore indicated to study large populations and very complex demographic scenarios. We illustrate the capabilities of MetaPopGen by applying it to the case of a marine fish metapopulation in the Mediterranean Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号