首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lucinski R  Schmid VH  Jansson S  Klimmek F 《FEBS letters》2006,580(27):6485-6488
In the outer antenna (LHCI) of higher plant photosystem I (PSI) four abundantly expressed light-harvesting protein of photosystem I (Lhca)-type proteins are organized in two heterodimeric domains (Lhca1/Lhca4 and Lhca2/Lhca3). Our cross-linking studies on PSI-LHCI preparations from wildtype Arabidopsis and pea plants indicate an exclusive interaction of the rarely expressed Lhca5 light-harvesting protein with LHCI in the Lhca2/Lhca3-site. In PSI particles with an altered LHCI composition Lhca5 assembles in the Lhca1/Lhca4 site, partly as a homodimer. This flexibility indicates a binding-competitive model for the LHCI assembly in plants regulated by molecular interactions of the Lhca proteins with the PSI core.  相似文献   

2.
Storf S  Stauber EJ  Hippler M  Schmid VH 《Biochemistry》2004,43(28):9214-9224
Until now, more genes of the light-harvesting antenna of higher-plant photosystem I (PSI) than proteins have been described. To improve our understanding of the composition of light-harvesting complex I (LHCI) of tomato (Lycopersicon esculentum), we combined one- and two-dimensional (1-D and 2-D, respectively) gel electrophoresis with immunoblotting and tandem mass spectrometry (MS/MS). Separation of PSI with high-resolution 1-D gels allowed separation of five bands attributed to proteins of LHCI. Immunoblotting with monospecific antibodies and MS/MS analysis enabled the correct assignment of the four prominent bands to light-harvesting proteins Lhca1-4. The fifth band was recognized by only the Lhca1 antibody. Immunodetection as well as mass spectrometric analysis revealed that these protein bands contain not only the eponymous protein but also other Lhca proteins, indicating a heterogeneous protein composition of Lhca bands. Additionally, highly sensitive MS/MS allowed detection of a second Lhca4 isoform and of Lhca5. These proteins had not been described before on the protein level in higher plants. Two-dimensional gel electrophoresis revealed an even more diverse composition of individual Lhca proteins than was apparent from 1-D gels. For each of the four prominent Lhca proteins, four to five isoforms with different isoelectric points could be identified. In the case of Lhca1, Lhca4, and Lhca3, additional isoforms with slightly differing molecular masses were identified. Thus, we were able to detect four to ten isoforms of each individual Lhca protein in PSI. Reasons for the origin of Lhca heterogeneity are discussed. The observed variety of Lhca proteins and their isoforms is of particular interest in the context of the recently published crystal structure of photosystem I from pea, which showed the presence of only four Lhca proteins per photosystem I. These findings indicate that several populations of photosystem I that differ in their Lhca composition may exist.  相似文献   

3.
Rice (Oryza sativa) is one of the staple foods of the world. Iron (Fe) deficiency is a major abiotic stress factor that contributes world-wide to losses in crop yield and decline in nutritional quality. As cofactor for many enzymes and proteins, iron is an essential element. It plays a pivotal role in chlorophyll (Chl) biosynthesis, and iron deficiency may result in decreased Chl production and, thus, reduced photosynthetic capacity. Photosystem I (PSI) is a prime target of iron deficiency because of its high iron content (12 Fe per PS). To understand the protein level changes in the light-harvesting complex (LHC) of PSI (LHCI) under iron deficiency, rice seedlings were grown in Hoagland's nutrient medium with and without Fe. Chlorophyll content and photosynthetic efficiency decreased under iron deficiency. Protein gel blots probed with antibodies against the PSI core and Lhca 1-4 proteins revealed that the core subunits PsaA and PsaB remained stable under iron deficiency, whereas PsaC and PsaD decreased by about 50%, and PsaE was completely degraded. Among the LHCI subunits, Lhca1 and Lhca2 decreased by 40 and 50%, respectively, whereas Lhca3 and Lhca4 were completely degraded. We propose that the dissociation of LHCI subunits may be due to increased levels of reactive oxygen species, which is suggested by the increased activity of superoxide dismutase.  相似文献   

4.
Although the light-harvesting chlorophyll protein complex I (LHCI) of photosystem I (PSI) is intimately associated with the PSI core complex and forms the PSI-LHCI supercomplex, the LHCI is normally synthesized in PSI-deficient mutants. In this paper, we compared the subunit compositions of the PSI-LHCI supercomplex and the LHCI by immunoblot analysis and two-dimensional gel electrophoresis combined with mass spectrometry. The PSI-LHCI supercomplex and the LHCI were purified by sucrose density gradient centrifugation and (diethylamino)ethyl column chromatography from n-dodecyl-beta-D-maltoside-solubilized thylakoids of the wild-type and DeltapsaB mutant of the green alga Chlamydomonas reinhardtii. The PSI-LHCI supercomplex contained all of the nine Lhca polypeptides (Lhca1-9) that are detected in wild-type thylakoids. In contrast, the LHCI retained only six Lhca polypeptides, whereas Lhca3 and two minor polypeptides, Lhca2 and Lhca9, were lost during the purification procedure. Sucrose density gradient centrifugation showed that the purified LHCI retains an oligomeric structure with an apparent molecular mass of 300-400 kDa. We therefore concluded that Lhca2, Lhca3, and Lhca9 are not required for the stable oligomeric structure of the LHCI and that the association of these polypeptides in the LHCI is stabilized by the presence of the PSI core complex. Finally, we discuss the possible localization and function of Lhca polypeptides in the LHCI.  相似文献   

5.
In Arabidopsis, the chloroplast NADH‐dehydrogenase‐like (NDH) complex is sandwiched between two copies of photosystem I (PSI) supercomplex, consisting of a PSI core and four light‐harvesting complex I (LHCI) proteins (PSI‐LHCI) to form the NDH–PSI supercomplex. Two minor LHCI proteins, Lhca5 and Lhca6, contribute to the interaction of each PSI–LHCI copy with the NDH complex. Here, large‐pore blue‐native gel electrophoresis revealed that, in addition to this complex, there were at least two types of higher‐order association of more LHCI copies with the NDH complex. In single‐particle images, this higher‐order association of PSI–LHCI preferentially occurs at the left side of the NDH complex when viewed from the stromal side, placing subcomplex A at the top (Yadav et al., Biochim. Biophys. Acta ‐ Bioenerg., 1858, 2017, 12). The association was impaired in the lhca6 mutant but not in the lhca5 mutant, suggesting that the left copy of PSI–LHCI was linked to the NDH complex via Lhca6. From an analysis of subunit compositions of the NDH–PSI supercomplex in lhca5 and lhca6 mutants, we propose that Lhca6 substitutes for Lhca2 in the left copy of PSI–LHCI, whereas Lhca5 substitutes for Lhca4 in the right copy. In the lhca2 mutant, Lhca3 was specifically stabilized in the NDH–PSI supercomplex through heterodimer formation with Lhca6. In the left copy of PSI–LHCI, subcomplex B, Lhca6 and NdhD likely formed the core of the supercomplex interaction. In contrast, a larger protein complex, including at least subcomplexes B and L and NdhB, was needed to form the contact site with Lhca5 in the right copy of PSI–LHCI.  相似文献   

6.
We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding that there are four Lhca proteins per PSI in the crystal structure [Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635]. According to HPLC analyses the number of pigment molecules bound within the LHCI is higher than expected from reconstitution studies or analyses of isolated native LHCI. Comparison of the spectra of the particles from the different lines reveals chlorophyll absorption bands peaking at 696, 688, 665, and 655 nm that are not present in isolated PSI or LHCI. These bands presumably originate from "gap" or "linker" pigments that are cooperatively coordinated by the Lhca and/or PSI proteins, which we have tentatively localized in the PSI-LHCI complex.  相似文献   

7.
A supercomplex containing the photosystem I (PSI) and chlorophyll a/b light-harvesting complex I (LHCI) has been isolated using a His-tagged mutant of Chlamydomonas reinhardtii. This LHCI-PSI supercomplex contained approximately 215 chlorophyll molecules of which 175 were estimated to be chlorophyll a and 40 to be chlorophyll b, based on P700 oxidation and chlorophyll a/b ratio measurements. Its room temperature long wavelength absorption peak was at 680 nm, and it emitted chlorophyll fluorescence maximally at 715 nm (77 K). The LHCI was composed of four or more different types of Lhca polypeptides including Lhca3. No LHCII proteins or other phosphoproteins were detected in the LHCI-PSI supercomplexes suggesting that the cells from which they were isolated were in State 1. Electron microscopy of negatively stained samples followed by image analysis revealed the LHCI-PSI supercomplex to have maximal dimensions of 220 A by 180 A and to be approximately 105 A thick. An averaged top view was used to model in x-ray and electron crystallographic data for PSI and Lhca proteins respectively. We conclude that the supercomplex consists of a PSI reaction center monomer with 11 Lhca proteins arranged along the side where the PSI proteins, PsaK, PsaJ, PsaF, and PsaG are located. The estimated molecular mass for the complex is 700 kDa including the bound chlorophyll molecules. The assignment of 11 Lhca proteins is consistent with a total chlorophyll level of 215 assuming that the PSI reaction center core binds approximately 100 chlorophylls and that each Lhca subunit binds 10 chlorophylls. There was no evidence for oligomerization of Chlamydomonas PSI in contrast to the trimerization of PSI in cyanobacteria.  相似文献   

8.
Peripheral chlorophyll a/b binding antenna of photosystem I (LHCI) from green algae and higher plants binds specific low energy absorbing chlorophylls (red pigments) that give rise to a unique red-shifted emission. A three-dimensional structural model of the Lhca4 polypeptide from the LHCI from higher plants was constructed on the basis of comparative sequence analysis, secondary structure prediction, and homology modeling using LHCII as a template. The obtained model of Lhca4 helps to visualize protein ligands to nine chlorophylls (Chls) and three potential His residues to extra Chls. Central domain of the Lhca4 comprising the first (A) and the third (C) transmembrane (TM) helices that binds 6 Chl molecules and two carotenoids is conserved structurally, whereas the interface between the first and the second TM helices and the outer surface of the second TM helix differ significantly among the LHCI and LHCII polypeptides. The model of Lhca4 predicts a histidine residue in the second TM helix, a potential binding site for extra Chl in close proximity to Chls a5 and b5 (labeling by Kühlbrandt). The interpigment interactions in the formed pigment cluster are suggested to cause a red spectral shift in absorption and emission. Modeling of the LHCI-730 heterodimer based on the model structures of Lhca1 and Lhca4 allowed us to suggest potential sites of pigment-pigment interactions that might be formed upon heterodimerization or docking of the LHCI dimers to the surface of PSI.  相似文献   

9.
We used isotope dilution MS to measure the stoichiometry of light‐harvesting complex I (LHCI) proteins with the photosystem I (PSI) core complex in the green alga Chlamydomonas reinhardtii. Proteotypic peptides served as quantitative markers for each of the nine gene products (Lhca1–9) and for PSI subunits. The quantitative data revealed that the LHCI antenna of C. reinhardtii contains about 7.5 ± 1.4 subunits. It further demonstrated that the thylakoid LHCI population is heterogeneously composed and that several lhca gene products are not present in 1:1 stoichiometries with PSI. When compared with vascular plants, LHCI of C. reinhardtii possesses a lower proportion of proteins potentially contributing to far‐red fluorescence emission. In general, the strategy presented is universally applicable for exploring subunit stoichiometries within the C. reinhardtii proteome.  相似文献   

10.
Pigment binding of photosystem I light-harvesting proteins   总被引:2,自引:0,他引:2  
Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in their recombinant form; their analysis allowed further dissection of pigment binding by individual LHCI proteins and analysis of pigment requirements for LHCI formation. By these different approaches a correlation between the requirement of a single chlorophyll species for LHC formation and the chlorophyll a/b ratio of LHCs could be detected, and indications regarding occupation of carotenoid-binding sites were obtained. Additionally the reconstitution approach allowed assignment of spectral features observed in native LHCI-680 to its components Lhca2 and Lhca3. It is suggested that excitation energy migrates from chlorophyll(s) fluorescing at 680 (Lhca3) via those fluorescing at 686/702 nm (Lhca2) or 720 nm (Lhca3) to the photosystem I core chlorophylls.  相似文献   

11.
We report a time-resolved fluorescence spectroscopy characterization of photosystem I (PSI) particles prepared from Arabidopsis lines with knock-out mutations against the peripheral antenna proteins of Lhca1 or Lhca4. The first mutant retains Lhca2 and Lhca3 while the second retains one other light-harvesting protein of photosystem I (Lhca) protein, probably Lhca5. The results indicate that Lhca2/3 and Lhca1/4 each provides about equally effective energy transfer routes to the PSI core complex, and that Lhca5 provides a less effective energy transfer route. We suggest that the specific location of each Lhca protein within the PSI-LHCI supercomplex is more important than the presence of so-called red chlorophylls in the Lhca proteins.  相似文献   

12.
The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx was studied in an in vitro assay using partially purified Vx de-epoxidase isolated from spinach thylakoids. All four LHCI proteins exhibited unique de-epoxidation characteristics. An almost complete Vx conversion to Zx was observed only in Lhca3, whereas Zx formation in the other LHCI proteins decreased in the order Lhca4 > Lhca1 > Lhca2. Most likely, these differences in Vx de-epoxidation were related to the different accessibility of the respective carotenoid binding sites in the distinct antenna proteins. The results indicate that Vx bound to site V1 and N1 is easily accessible for de-epoxidation, whereas Vx bound to L2 is only partially and/or with the slower kinetics convertible to Zx. The de-epoxidation properties determined for the monomeric recombinant proteins were consistent with those obtained for isolated native LHCI-730 and LHCI-680 in the same in vitro assay and the de-epoxidation state found under in vivo conditions in native LHCIs.  相似文献   

13.
Proteomic analysis of photosystem I components from different plant species   总被引:1,自引:0,他引:1  
Zolla L  Rinalducci S  Timperio AM 《Proteomics》2007,7(11):1866-1876
In this study, the photosystem I (PSI) highly hydrophobic proteins present within stroma lamellae of the thylakoid membrane were separated by RP-HPLC and identified either by in-solution trypsin digestion peptide fragment fingerprinting or by the close correspondence between the intact mass measurements (IMMs) and those expected from the DNA sequence. Protein identification performed by MS/MS was as reliable as IMMs. Thus, IMM is an easy and valid method for identifying proteins that have no PTMs. This paper reports the M(r) for all PSI proteins in ten different species, including those whose genes have not yet been cloned. Lhca5 was revealed unequivocally in four species, corroborating that it is indeed a protein belonging to the light-harvesting antenna of PSI. In all species examined, the product of the Lhca6 gene has never been revealed. Concerning core proteins, Psa-O has been revealed in three species; isoforms of Psa-D and Psa-E have been found in both monocots and dicots. Small proteins like Psa-I and Psa-J are well separated and identified. RP-HPLC produces reliable fingerprints and reveals that the relative amounts of PSI proteins appear to be markedly different.  相似文献   

14.
The physiological function of Photosystem I (PSI) is a sunlight energy converter, catalyzing one of the initial steps in driving oxygenic photosynthesis in cyanobacteria, algae and higher plants. The Chlamydomonas reinhardtii PSI structure was not known since it contains a unique structure having additional light harvesting complex I (LHCI) subunits, which play a major role in the transfer of sunlight energy to the reaction center. Here, individual subunits of LHC and core subunits are built based on the PDB taken from RCSB Protein Data Bank. The model gives information about the geometrical existence of subunits following a flanking order of Lhca5, Lhca1, Lhca6, Lhca4, Lhca2, Lhca8, Lhca9, Lhca7, and Lhca3. The new subunit PsaO is located close to the PsaH, PsaI and PsaL subunits, thus it may be involved in the state transition mechanism and stabilization of PSI-LHCI supercomplexes. The modeled PSI-LHCI structure of C. reinhardtii shows a unique arrangement of PsaN, PsaO of PSI core subunits and Lhca5 to Lhca9 of LHCI subunits. There are many non-covalent interactions among the PSI and LHCI subunits, which suggest that C. reinhardtii PSI-LHCI supercomplexes are more complex than higher plants. These results strongly support the experimental data that, even with harsh treatment of the PSI-LHCI supercomplexes with detergent, the complexes do not dissociate due to strong interactions between the PSI core and LHCI. Thus, our 3D model may give valid structural information of the PSI-LHCI arrangement and its physiological role in C. reinhardtii.  相似文献   

15.
The light-harvesting proteins (Lhca) of photosystem I (PSI) from four monocot and five dicot species were extracted from plant material, separated by reversed-phase high-performance liquid chromatography (HPLC) and subsequently identified on the basis of their intact molecular masses upon on-line hyphenation with electrospray ionization mass spectrometry. Although their migration behavior in gel electrophoresis was very similar, the elution times among the four antenna types in reversed-phase-HPLC differed significantly, even more than those observed for the light-harvesting proteins of photosystem II. Identification of proteins is based on the good agreement between the measured intact molecular masses and the values calculated on the basis of their nucleotide-derived amino acid sequences, which makes the intact molecular masses applicable as intact mass tags. These values match excellently for Arabidopsis, most probably because of the availability of high-quality DNA sequence data. In all species examined, the four antennae eluted in the same order, namely Lhca1 > Lhca3 > Lhca4 > Lhca2. These characteristic patterns enabled an unequivocal assignment of the proteins in preparations from different species. Interestingly, in all species examined, Lhca1 and Lhca2 were present in two or three isoforms. A fifth antenna protein, corresponding to the Lhca6 gene, was found in tomato (Lycopersicon esculentum). However PSI showed a lower heterogeneity than photosystem II. In most plant species, Lhca2 and Lhca4 proteins are the most abundant PSI antenna proteins. The HPLC method used in this study was found to be highly reproducible, and the chromatograms may serve as a highly confident fingerprint for comparison within a single and among different species for future studies of the PSI antenna.  相似文献   

16.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   

17.
Photosystem I (PSI) is one of the two photosystems in photosynthesis, and performs a series of electron transfer reactions leading to the reduction of ferredoxin. In higher plants, PSI is surrounded by four light-harvesting complex I (LHCI) subunits, which harvest and transfer energy efficiently to the PSI core. The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.6 Å resolution, providing much information on the arrangement of proteins and cofactors in this complicated supercomplex. Here we have optimized crystallization conditions, and analyzed the crystal structure of PSI-LHCI at 2.4 Å resolution. Our structure showed some shift of the LHCI, especially the Lhca4 subunit, away from the PSI core, suggesting the indirect connection and inefficiency of energy transfer from this Lhca subunit to the PSI core. We identified five new lipids in the structure, most of them are located in the gap region between the Lhca subunits and the PSI core. These lipid molecules may play important roles in binding of the Lhca subunits to the core, as well as in the assembly of the supercomplex. The present results thus provide novel information for the elucidation of the mechanisms for the light-energy harvesting, transfer and assembly of this supercomplex.  相似文献   

18.

Background

Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency.

Results

77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions.

Conclusions

Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency.  相似文献   

19.
Ferritin is a key player in the iron homeostasis due to its ability to store large quantities of iron. Chlamydomonas reinhardtii contains two nuclear genes for ferritin ( ferr1 and ferr2 ) that are induced when Chlamydomonas cells are shifted to iron-deficient conditions. In response to the reduced iron availability, degradation of photosystem I (PSI) and remodeling of its light-harvesting complex occur. This active PSI degradation slows down under photo-autotrophic conditions where photosynthesis is indispensable. We observed a strong induction of ferritin correlated with the degree of PSI degradation during iron deficiency. The PSI level can be restored to normal within 24 h after iron repletion at the expense of the accumulated ferritin, indicating that the ferritin-stored iron allows fast adjustment of the photosynthetic apparatus with respect to iron availability. RNAi strains that are significantly reduced in the amount of ferritin show a striking delay in the degradation of PSI under iron deficiency. Furthermore, these strains are more susceptible to photo-oxidative stress under high-light conditions. We conclude that (i) ferritin is used to buffer the iron released by degradation of the photosynthetic complexes, (ii) the physiological status of the cell determines the strategy used to overcome the impact of iron deficiency, (iii) the availability of ferritin is important for rapid degradation of PSI under iron deficiency, and (iv) ferritin plays a protective role under photo-oxidative stress conditions.  相似文献   

20.
We report on the results obtained by measuring the stoichiometry of antenna polypeptides in Photosystem I (PSI) from Arabidopsis thaliana. This analysis was performed by quantification of Coomassie blue binding to individual LHCI polypeptides, fractionation by SDS/PAGE, and by the use of recombinant light harvesting complex of Photosystem I (Lhca) holoproteins as a standard reference. Our results show that a single copy of each Lhca1-4 polypeptide is present in Photosystem I. This is in agreement with the recent structural data on PSI-LHCI complex [Ben Shem, A., Frolow, F. and Nelson, N. (2003) Nature, 426, 630-635]. The discrepancy from earlier estimations based on pigment binding and yielding two copies of each LHCI polypeptide per PSI, is explained by the presence of 'gap' and 'linker' chlorophylls bound at the interface between PSI core and LHCI. We showed that these chlorophylls are lost when LHCI is detached from the PSI core moiety by detergent treatment and that gap and linker chlorophylls are both Chl a and Chl b. Carotenoid molecules are also found at this interface between LHCI and PSI core. Similar experiments, performed on PSII supercomplexes, showed that dissociation into individual pigment-proteins did not produce a significant loss of pigments, suggesting that gap and linker chlorophylls are a peculiar feature of Photosystem I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号