首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Site-directed mutagenesis was used to investigate the functions of the traM gene in plasmid R1-mediated bacterial conjugation. Three mutant alleles, a null mutation, a sense mutation and a stop mutation, were recombined back into the R1-16 plasmid, a transfer-derepressed ( finO  ) variant of plasmid R1. The frequency of conjugative transfer of the traM null mutant derivative of R1-16 was 107-fold lower than that of the isogenic parent plasmid, showing the absolute requirement for this gene in conjugative transfer of plasmid R1. Measurements of the abundance of plasmid specified traJ , traA and traM mRNAs, TraM protein levels, and complementation studies indicated that the traM gene of plasmid R1 has at least two functions in conjugation: (i) positive control of transfer gene expression; and (ii) a function in a process distinct from gene expression. Since expression of the negatively autoregulated traM gene is itself affected positively by the expression of the transfer operon genes, this gene constitutes a decisive element within a regulatory circuit that co-ordinates expression of the genes necessary for horizontal DNA transfer. Based on our studies, we present a novel model for the regulation of the transfer genes of plasmid R1 that might also be applicable to other IncF plasmids.  相似文献   

3.
Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free‐floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time‐dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.  相似文献   

4.
5.
6.
A healthy diet improves adult stem cell function and delays diseases such as cancer, heart disease, and neurodegeneration. Defining molecular mechanisms by which nutrients dictate stem cell behavior is a key step toward understanding the role of diet in tissue homeostasis. In this paper, we elucidate the mechanism by which dietary cholesterol controls epithelial follicle stem cell (FSC) proliferation in the fly ovary. In nutrient-restricted flies, the transmembrane protein Boi sequesters Hedgehog (Hh) ligand at the surface of Hh-producing cells within the ovary, limiting FSC proliferation. Upon feeding, dietary cholesterol stimulates S6 kinase–mediated phosphorylation of the Boi cytoplasmic domain, triggering Hh release and FSC proliferation. This mechanism enables a rapid, tissue-specific response to nutritional changes, tailoring stem cell divisions and egg production to environmental conditions sufficient for progeny survival. If conserved in other systems, this mechanism will likely have important implications for studies on molecular control of stem cell function, in which the benefits of low calorie and low cholesterol diets are beginning to emerge.  相似文献   

7.
We have examined the growth behavior of small numbers of interstitial stem cells transplanted into tissue of genetically unrelated strains of Hydra magnipapillata. We show that such stem cells, which are at low density following transplantation, proliferate more rapidly than the stem cells of the host, which are at normal density. The rapid proliferation is similar to the proliferation rate of stem cells transplanted into interstitial cell free tissue. The results suggest that stem cells transplanted into heterotypic tissue are unable to "sense" the presence of host stem cells and to adopt their growth rate to that of the surrounding cells. Thus, the feedback signal which negatively regulates stem cell growth as a function of stem cell density must be strain specific.  相似文献   

8.
In embryonic stem cells (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors regulating the ESC state is not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 ubiquitin ligase protein Makorin‐1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems‐level analyses, we compiled a MKRN1‐centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses in undifferentiated ESCs revealed that MKRN1 associates with RNA‐binding proteins, and ensuing RIP‐chip analysis determined that MKRN1 associates with mRNAs encoding functionally related proteins including proteins that function during cellular stress. Subsequent biological validation identified MKRN1 as a novel stress granule‐resident protein, although MKRN1 is not required for stress granule formation, or survival of unstressed ESCs. Thus, our unbiased systems‐level analyses support a role for the E3 ligase MKRN1 as a ribonucleoprotein within the ESC GRN.  相似文献   

9.
10.
11.
Plant cell division occurs mainly in developing tissues and appears to be highly regulated in both space and time. Recently, genetic and molecular analyses have been able to dissect the function of cell proliferation in the processes of growth and development. Mutant studies have shown that plants have a compensatory mechanism whereby increased cell expansion can partially cover for defects in proliferation. Ectopic expression of developmental and cell-cycle regulators has indicated how growth rate is controlled at the molecular level in meristems and lateral organs.  相似文献   

12.
In Drosophila, intestinal stem cells (ISCs) respond to oxidative challenges and inflammation by increasing proliferation rates. This phenotype is part of a regenerative response, but can lead to hyperproliferation and epithelial degeneration in the aging animal. Here we show that Nrf2, a master regulator of the cellular redox state, specifically controls the proliferative activity of ISCs, promoting intestinal homeostasis. We find that Nrf2 is constitutively active in ISCs and that repression of Nrf2 by its negative regulator Keap1 is required for ISC proliferation. We further show that Nrf2 and Keap1 exert this function in ISCs by regulating the intracellular redox balance. Accordingly, loss of Nrf2 in ISCs causes accumulation of reactive oxygen species and accelerates age-related degeneration of the intestinal epithelium. Our findings establish Keap1 and Nrf2 as a critical redox management system that regulates stem cell function in high-turnover tissues.  相似文献   

13.
14.
15.
16.
17.
18.
How a committed cell can be reverted to an undifferentiated state is a central question in stem cell biology. This process, called dedifferentiation, is likely to be important for replacing stem cells as they age or get damaged. Tremendous progress has been made in understanding this fundamental process, but its mechanisms are poorly understood. Here we demonstrate that the aberrant activation of Ras-ERK MAPK signaling promotes cellular dedifferentiation in the Caenorhabditis elegans germline. To activate signaling, we removed two negative regulators, the PUF-8 RNA-binding protein and LIP-1 dual specificity phosphatase. The removal of both of these two regulators caused secondary spermatocytes to dedifferentiate and begin mitotic divisions. Interestingly, reduction of Ras-ERK MAPK signaling, either by mutation or chemical inhibition, blocked the initiation of dedifferentiation. By RNAi screening, we identified RSKN-1/P90(RSK) as a downstream effector of MPK-1/ERK that is critical for dedifferentiation: rskn-1 RNAi suppressed spermatocyte dedifferentiation and instead induced meiotic divisions. These regulators are broadly conserved, suggesting that similar molecular circuitry may control cellular dedifferentiation in other organisms, including humans.  相似文献   

19.
20.
Xing  Linlin  Guo  Maozu  Liu  Xiaoyan  Wang  Chunyu  Wang  Lei  Zhang  Yin 《BMC genomics》2017,18(9):844-30

Background

The reconstruction of gene regulatory network (GRN) from gene expression data can discover regulatory relationships among genes and gain deep insights into the complicated regulation mechanism of life. However, it is still a great challenge in systems biology and bioinformatics. During the past years, numerous computational approaches have been developed for this goal, and Bayesian network (BN) methods draw most of attention among these methods because of its inherent probability characteristics. However, Bayesian network methods are time consuming and cannot handle large-scale networks due to their high computational complexity, while the mutual information-based methods are highly effective but directionless and have a high false-positive rate.

Results

To solve these problems, we propose a Candidate Auto Selection algorithm (CAS) based on mutual information and breakpoint detection to restrict the search space in order to accelerate the learning process of Bayesian network. First, the proposed CAS algorithm automatically selects the neighbor candidates of each node before searching the best structure of GRN. Then based on CAS algorithm, we propose a globally optimal greedy search method (CAS + G), which focuses on finding the highest rated network structure, and a local learning method (CAS + L), which focuses on faster learning the structure with little loss of quality.

Conclusion

Results show that the proposed CAS algorithm can effectively reduce the search space of Bayesian networks through identifying the neighbor candidates of each node. In our experiments, the CAS + G method outperforms the state-of-the-art method on simulation data for inferring GRNs, and the CAS + L method is significantly faster than the state-of-the-art method with little loss of accuracy. Hence, the CAS based methods effectively decrease the computational complexity of Bayesian network and are more suitable for GRN inference.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号