首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant growth, chlorophyll (Chl) content, photosynthetic gas exchange, ribulose-1,5-bisphosphate carboxylase (RuBPCO) enzyme activity, and Chl fluorescence in radish (Raphanus sativus var. longipinnatus) plants were examined after turnip mosaic virus (TuMV) infection. Plant fresh mass, dry mass, Chl content, net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and RuBPCO activity were significantly lower in infected plants after 5 weeks of virus infection as compared to healthy plants. The 5-week virus infection did not induce significant differences in intercellular CO2 concentration (C i, photochemical efficiency of photosystem 2, PS2 (Fv/Fm), excitation capture efficiency of open PS2 reaction centres (Fv'/Fm'), effective quantum efficiency of photosystem 2 (ΔF/Fm'), and photochemical quenching (qP), but non-photochemical quenching (qN) and alternative electron sink (AES) were significantly enhanced. Thus the decreased plant biomass of TuMV-infected plants might be associated with the decreased photosynthetic activity mainly due to reduced RuBPCO activity.  相似文献   

2.
Photosynthesis, photorespiration, and chlorophyll (Chl) fluorescence in green and red Berberis thunbergii leaves were studied with two different measuring radiations, red (RR) and “white” (WR). The photosynthetic and photorespiration rates responded differently to the different radiation qualities, which indicate that the carboxylase and oxygenase activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) were affected. Differences in photosynthetic rate between the two color leaves were less under RR than under WR. However, this reduced difference in photosynthetic rate was not correlated with the stomatal response to the measuring radiation qualities. Compared with the WR, the RR reduced the differences in dark-adapted minimum and maximum fluorescence, steady-state fluorescence, light-adapted maximum fluorescence, and actual photochemical efficiency (ΦPS2) of photosystem 2 (PS2), but enlarged the difference in non-photochemical quenching between the two color leaves. Differences in both maximum quantum yield of PS2 and ratio of ΦPS2 to quantum yield of CO2 fixation between the two color leaves were similar under the two measuring radiations. To exclude disturbance of radiation attenuation caused by anthocyanins, it is better to use RR to compare the photosynthesis and Chl fluorescence in green versus red leaves.  相似文献   

3.
A new method of the chlorophyll (Chl) a fluorescence quenching analysis is described, which allows the calculation of values of (at least) three components of the non-photochemical quenching of the variable Chl a fluorescence (q N) using a non-linear regression of a multi-exponential function within experimental data. Formulae for coefficients of the “energy”-dependent (ΔpH-dependent) quenching (q E), the state-transition quenching (q T) and the photo/inhibitory quenching (q I) of Chl a fluorescence were found on the basis of three assumptions: (i) the dark relaxation kinetics of q N, as well as of all its components, is of an exponential nature, (ii) the superposition principle is valid for individual Chl a fluorescence quenching processes and (iii) the same reference fluorescence level (namely the maximum variable Chl a fluorescence yield in the dark-adapted state, F V) is used to define both q N and its components. All definitions as well as the algorithms for analytical recognition of the q N components are theoretically clarified and experimentally tested. The described theory results in a rather simple equation allowing to compute values for all q N components (q E, q T, q I) as well as the half-times of relaxation (τ1/2) of corresponding quenching processes. It is demonstrated that under the above assumptions it holds: q N = q E + q T + q I. The theoretically derived equations are tested, and the results obtained are discussed for non-stressed and stressed photosynthetically active samples. Semi-empirical formulae for a fast estimation of values of the q N components from experimental data are also given.  相似文献   

4.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (P N) and stomatal conductance (g s) of attached leaves decreased as leaf water potential (Ψw) declined from −0.3 to −2.9 MPa. Although g s decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (C i) were observed as Ψw decreased to −1.8 MPa, but C i increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 μmol m−2 s−1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from −0.3 to −2.9 MPa. A significant linear relationship between mean P N and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower.  相似文献   

5.
We investigated the effect of large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activase (RuBPCO-A) on photosynthesis and constructed two plant expression vectors and introduced them into rice cultivars (Oryza sativa f. japonica cv. Nipponbare) through Agrobacterium tumefaciens-mediated transformation. Plasmid pCBrbcSRca contained the cDNA of RuBPCO-A large isoform (rca) controlled by RuBPCO small subunit gene promoter (rbcS), and plasmid pCBUbi-antirca contained a reversed rca sequence driven by maize ubiquitin promoter. Transformants were screened by polymerase chain reaction (PCR), Southern and Western blot analysis. Compared to the control rice plants, RuBPCO activity was improved in the pCBrbcSRca rice plants, which is opposite to RuBPCO activity in the pCBUbi-antirca rice plants. Net photosynthetic rate, quantum yield of electron transport in photosystem 2, and steady state photochemical fluorescence quenching increased in the pCBrbcSRca plants, but decreased in the pCBUbi-antirca plants as compared to the controls. The pCBrbcSRca plants had heavier grains and accelerated development, while the pCBUbi-antirca plants showed reverse changes. Thus RuBPCO-A large isoform exerts considerable effect on photosynthesis and is a promising target for plant breeding to improve rice crop yield.  相似文献   

6.
In comparison with its wild type (WT), the transgenic (TG) rice with silenced OsBP-73 gene had significantly lower plant height, grain number per panicle, and leaf net photosynthetic rate (P N). Also, the TG rice showed significantly lower chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), RuBPCO activase, and RuBP contents, photosystem 2 (PS2) photochemical efficiency (Fv/Fm and ΔF/Fm′), apparent quantum yield of carbon assimilation (Φc), carboxylation efficiency (CE), photosynthetic electron transport and photophosphorylation rates as well as sucrose phosphate synthase activity, but higher intercellular CO2 concentration, sucrose, fructose, and glycerate 3-phosphate contents, and non-photochemical quenching of Chl fluorescence (NPQ). Thus the decreased P N in the TG rice leaves is related to both RuBP carboxylation and RuBP regeneration limitations, and the latter is a predominant limitation to photosynthesis.  相似文献   

7.
The variable fluorescence at the maximum Fm of the fluorescence induction (Kautsky) curve is known to be substantially suppressed shortly after light adaption due to nonphotochemical qE quenching. The kinetic pattern of the dark decay at Fm consists of three components with rates ~20, ~1, and ~0.1 s–1, respectively. Light adaptation has no or little effect on these rate constants. It causes a decrease in the ratio between the amplitudes of the slow and fast one with negligible change in the small amplitude of the ultra-slow component. Results add to evidence for the hypothesis that the dark-reversible decrease in variable fluorescence accompanying light adaptation during the P–S phase of the fluorescence induction curve is due to an alteration in nonphotochemical qE quenching caused by changes in the trans-thylakoid proton motive force in response to changes in the proton conductance gH+ of the CF0-channel of the CF0·CF1·ATPase.  相似文献   

8.
Chlorophyll (Chl) fluorescence of warm day/cool night temperature exposed Phalaenopsis plants was measured hourly during 48 h to study the simultaneous temperature and irradiance response of the photosynthetic physiology. The daily pattern of fluorescence kinetics showed abrupt changes of photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of photosystem II electron transport (ΦPSII) upon transition from day to night and vice versa. During the day, the course of ΦPSII and NPQ was related to the air temperature pattern, while maximum quantum efficiency of PSII photochemistry (Fv/Fm) revealed a rather light dependent response. Information on these daily dynamics in fluorescence kinetics is important with respect to meaningful data collection and interpretation.  相似文献   

9.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

10.
The effect of drought stress (DS) on photosynthesis and photosynthesis-related enzyme activities was investigated in F. pringlei (C3), F. floridana (C3–C4), F. brownii (C4-like), and F. trinervia (C4) species. Stomatal closure was observed in all species, probably being the main cause for the decline in photosynthesis in the C3 species under ambient conditions. In vitro ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and stromal fructose 1,6-bisphosphatase (sFBP) activities were sufficient to interpret the net photosynthetic rates (P N), but, from the decreases in P N values under high CO2 (C a = 700 μmol mol− 1) it is concluded that a decrease in the in vivo rate of the RuBPCO reaction may be an additional limiting factor under DS in the C3 species. The observed decline in the photosynthesis capacity of the C3–C4 species is suggested to be associated both to in vivo decreases of RuBPCO activity and of the RuBP regeneration rate. The decline of the maximum P N observed in the C4-like species under DS was probably attributed to a decrease in maximum RuBPCO activity and/or to decrease of enzyme substrate (RuBP or PEP) regeneration rates. In the C4 species, the decline of both in vivo photosynthesis and photosynthetic capacity could be due to in vivo inhibition of the phosphoenolpyruvate carboxylase (PEPC) by a twofold increase of the malate concentration observed in mesophyll cell extracts from DS plants.  相似文献   

11.
In order to investigate the effect of large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activase (RuBPCO-A) on photosynthesis, cDNA of the enzyme (rca) was transferred to rice cultivars (Oryza sativa f. japonica cv. Nipponbare) under the control of RuBPCO small subunit gene promoter (rbcS) via Agrobacterium tumefaciens-mediated transformation. Transgenic rice plants were identified by polymerase chain reaction (PCR) and Southern and Western blot analyses. Net photosynthetic rate (P N) values of the T1 transgenic lines 34 (T34) and 40 (T40) were 45.26 and 46.32 % higher than that of the control plants, respectively. At the same time, their carboxylation efficiency and RuBPCO initial activity, quantum yield of electron transport in photosystem 2 (ΦPS2), and steady state photochemical fluorescence quenching (qP) increased. In addition, heading time of the transgenic rice was advanced. Thus increasing the amount of large isoform of RuBPCO-A in the transgenic rice might have a stimulatory effect on both photosynthesis and plant growth.  相似文献   

12.
This work aimed to evaluate if gas exchange and PSII photochemical activity in maize are affected by different irradiance levels during short-term exposure to elevated CO2. For this purpose gas exchange and chlorophyll a fluorescence were measured on maize plants grown at ambient CO2 concentration (control CO2) and exposed for 4 h to short-term treatments at 800 μmol(CO2) mol−1 (high CO2) at a photosynthetic photon flux density (PPFD) of either 1,000 μmol m−2 s−1 (control light) or 1,900 μmol m−2 s−1 (high light). At control light, high-CO2 leaves showed a significant decrease of net photosynthetic rate (P N) and a rise in the ratio of intercellular to ambient CO2 concentration (C i/C a) and water-use efficiency (WUE) compared to control CO2 leaves. No difference between CO2 concentrations for PSII effective photochemistry (ΦPSII), photochemical quenching (qp) and nonphotochemical quenching (NPQ) was detected. Under high light, high-CO2 leaves did not differ in P N, C i/C a, ΦPSII and NPQ, but showed an increase of WUE. These results suggest that at control light photosynthetic apparatus is negatively affected by high CO2 concentration in terms of carbon gain by limitations in photosynthetic dark reaction rather than in photochemistry. At high light, the elevated CO2 concentration did not promote an increase of photosynthesis and photochemistry but only an improvement of water balance due to increased WUE.  相似文献   

13.
A field study was performed on triticale, field bean, maize and amaranth, to find differences between studied species in physiological alterations resulting from progressive response as injuries and/or acclimation to long-term soil drought during various stages of plant development. The measurements of leaf water potential, electrolyte leakage, chlorophyll a fluorescence, leaf gas exchange and yield analysis were done. A special emphasis was given to the measurements of the blue, green, red and far-red fluorescence. Beside, different ratios of the four fluorescence bands (red/far-red: F 690/F 740, blue/red: F 440/F 690, blue/far-red: F 440/F 740 and blue/green: F 440/F 520) were calculated. Based on both yield analysis and measurements of physiological processes it can be suggested that field bean and maize responded with better tolerance to the water deficit in soil due to the activation of photoprotective mechanism probably connected with synthesis of the phenolic compounds, which can play a role of photoprotectors in different stages of plant development. The photosynthetic apparatus of those two species scattered the excess of excitation energy more effectively, partially through its transfer to PS I. In this way, plants avoided irreversible and/or deep injuries to PS II. The observed changes in the red fluorescence emission and in the F v/F m for triticale and amaranth could have occurred due to serious and irreversible photoinhibitory injuries. Probably, field bean and maize acclimatized more effectively to soil drought through the development of effective mechanisms for utilising excitation energy in the photosynthetic conversion of light accompanied by the mechanism protecting the photosynthetic apparatus against the excess of this energy.  相似文献   

14.
Many aquatic algae induce a CO2-concentrating mechanism (CCM) associated with active inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic carbon even in low-CO2 (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca2+-binding protein CAS was identified as a novel factor regulating the expression of CCM-related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO2 and light availability, its detailed localization in the chloroplast has not been examined in vivo. In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and an image deconvolution method. In high-CO2 (5% v/v) conditions, the fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO2 and gather inside the pyrenoid during the operation of the CCM.  相似文献   

15.
The effects of the tertiary amines tetracaine, brucine and dibucaine on photophosphorylation and control of photosynthetic electron transport in isolated chloroplasts of Spinacia oleracea were investigated. Tertiary amines inhibited photophosphorylation while the related electron transport decreased to the rates, observed under non-phosphorylating conditions. Light induced quenching of 9-aminoacridine fluorescence and uptake of 14C-labelled methylamine in the thylakoid lumen declined in parallel with photophosphorylation, indicating a decline of the transthylakoid proton gradient. In the presence of ionophoric uncouplers such as nigericin, no effect of tertiary amines on electron transport was seen in a range of concentration where photophosphorylation was inhibited. Under the influence of the tertiary amines tested, pH-dependent feed-back control of photosystem II, as indicated by energy-dependent quenching of chlorophyll fluorescence, was unaffected or even increased in a range of concentration where 9-aminoacridine fluorescence quenching and photophosphorylation were inhibited. The data are discussed with respect to a possible involvement of localized proton flow pathways in energy coupling and feed-back control of electron transport.Abbreviations 9-AA 9-aminoacridine - J e flux of photosynthetic electron transport - PC photosynthetic control - pH1 H+ concentration in the thylakoid lumen - pmf proton motive force - P potential quantum yield of photochemistry of photosystem II (with open reaction centers) - Q A primary quinone-type electron acceptor of photosystem II - q Q photochemical quenching of chlorophyll fluorescence - q E energy-dependent quenching of chlorophyll fluorescence - q AA light-induced quenching of 9-amino-acridine fluorescence  相似文献   

16.
Photochemical efficiency of PSII of Ctenanthe setosa was investigated to understand the photosynthetic adaptation mechanism under drought stress causing leaf rolling. Stomatal conductance (g s), the levels of photosynthetic pigments and chlorophyll (Chl) fluorescence parameters were determined in leaves that had four different visual leaf rolling scores from 1 to 4, opened after re-watering and mechanically opened at score 4. g s value gradually decreased in adaxial and abaxial surfaces in relation to scores of leaf rolling. Pigment contents decreased until score 3 but approached score 1 level at score 4. No significant variations in effective quantum yield of PSII (ΦPSII), and photochemical quenching (qp) were found until score 3, while they significantly decreased at score 4. Non-photochemical quenching (NPQ) increased at score 2 but then decreased. After re-watering, the Chl fluorescence and other physiological parameters reached to approximately score 1 value, again. As for mechanically opened leaves, g s decreased during drought period. The decrease in adaxial surface was higher than that of the rolled leaves. NPQ was higher than that of the rolled leaves. ΦPSII and qp significantly declined and the decreases were more than those of the rolled leaves. In conclusion, the results indicate that leaf rolling protects PSII functionality from damage induced by drought stress.  相似文献   

17.
Štroch  M.  Špunda  V.  Kurasová  I. 《Photosynthetica》2004,42(3):323-337
The review deals with thermal dissipation of absorbed excitation energy within pigment-protein complexes of thylakoid membranes in higher plants. We focus on the de-excitation regulatory processes within photosystem 2 (PS2) that can be monitored as non-photochemical quenching of chlorophyll (Chl) a fluorescence consisting of three components known as energy-dependent quenching (qE), state-transition quenching (qT), and photoinhibitory quenching (qI). We summarize the role of thylakoid lumen pH, xanthophylls, and PS2 proteins in qE mechanism. Further, both the similarity between qE and qI and specific features of qI are described. The other routes of thermal energy dissipation are also mentioned, that is dissipation within photosystem 1 and dissipation through the triplet Chl pathway. The significance of the individual de-excitation processes in protection against photo-oxidative damage to the photosynthetic apparatus under excess photon supply is stretched.  相似文献   

18.
The photosynthetic performance and related leaf traits of Incarvillea delavayi Bur. et Franch were studied at different water regimes to assess its capacity for photosynthetic acclimation to water stress. The initial response of I. delavayi to water stress was the closure of stomata, which resulted in down-regulation of photosynthesis. The stomatal limitation (SL) represented the main component to photosynthetic limitations but non-stomatal limitation (NSL) increased quickly with the increasing water stress, and had similar magnitude to SL under severe water stress (soil moisture 25–30 % of field capacity). Chlorophyll (Chl) a fluorescence parameters characterizing photosystem (PS) 2 photochemical efficiency (ΦPS2), electron transport rate (J) and photochemical quenching (qP) decreased with the increasing water stress, indicating impaired photosynthetic apparatus. However, the water-stressed plants had a increased mesophyll CO2 diffusional conductance, Chl a/b ratio, leaf nitrogen partitioning in RuBPCO and bioenergetics in later grown parts, indicating that I. delavay had a substantial physiological plasticity and showed a good tolerance to water stress.  相似文献   

19.
Regulation of light harvesting in response to changes in light intensity, CO2 and O2 concentration was studied in C4 species representing three different metabolic subtypes: Sorghum bicolor (NADP-malic enzyme), Amaranthus edulis (NAD-malic enzyme), and Panicum texanum (PEP-carboxykinase). Several photosynthetic parameters were measured on the intact leaf level including CO2 assimilation rates, O2 evolution, photosystem II activities, thylakoid proton circuit and dissipation of excitation energy. Gross rates of O2 evolution ( J\textO2 J_{{{\text{O}}_{2} }} , measured by analysis of chlorophyll fluorescence), net rates of O2 evolution and CO2 assimilation responded in parallel to changes in light and CO2 levels. The C4 subtypes had similar energy requirements for photosynthesis since there were no significant differences in maximal quantum efficiencies for gross rates of O2 evolution (average value = 0.072 O2/quanta absorbed, ~14 quanta per O2 evolved). At saturating actinic light intensities, when photosynthesis was suppressed by decreasing CO2, ATP synthase proton conductivity (g H +) responded strongly to changes in electron flow, decreasing linearly with J\textO2 J_{{{\text{O}}_{2} }} , which was previously observed in C3 plants. It is proposed that g H + is controlled at the substrate level by inorganic phosphate availability. The results suggest development of nonphotochemical quenching in C4 plants is controlled by a decrease in g H +, which causes an increase in proton motive force by restricting proton efflux from the lumen, rather than by cyclic or pseudocyclic electron flow.  相似文献   

20.
The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new agents to combat cyanobacterial bloom formation in water reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号