首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A panel of three monoclonal antibodies (MoAbs) was tested on 29 benign and 53 malignant effusions with the aim of investigating its usefulness for the discrimination between benign and malignant lesions. The panel consisted of MoAbs directed against epithelial membrane antigen (EMA); MCA-b-12, reacting with a 350 kD glycoprotein with mucin-like characteristics present on human breast cancer cells and various other normal and neoplastic tissues, and Ber-EP4, directed against a 34 and 39 kD glycopeptide on human epithelial cells but not on mesothelium. Fifty-two (98%) of the malignant effusions reacted with EMA, 49 (92%) with MCA-b-12 and 44 (83%) with Ber-EP4. Fourteen per cent of benign effusions reacted with EMA, 17% with MCA-b-12 and 7% with Ber-EP4. All seven effusions obtained from patients with a malignant mesothelioma reacted with EMA, six of the seven cases staining intensively. None of the seven stained with Ber-EP4. MCA-b-12 did not react with the cells in one case of malignant mesothelioma. The results suggest that the combination of EMA and Ber-EP4 may be used to discriminate between benign and malignant cells and possibly also between adenocarcinoma and malignant mesothelioma. MCA-b-12 followed in general the reaction pattern of EMA, although often with a less intense staining reaction, making this antibody unsuitable for inclusion in the panel.  相似文献   

3.
Urokinase-type (uPA) plasminogen activator is regulated by serine protease inhibitors (serpins), especially plasminogen activator inhibitor-1 (PAI-1). In many cancers, uPA and PAI-1 contribute to the invasive phenotype. We examined the in vitro migration and invasive capabilities of breast, ovarian, endometrial, and cervical cancer cell lines compared to their plasminogen activator system profiles. We then overexpressed active wild-type PAI-1 and an inactive "substrate" P14 form of PAI-1 (T333R) using stable transfection and adenoviral gene delivery. We also upregulated endogenous uPA and PAI-1 in these cells by treatment with transforming growth factor-beta. Some breast and ovarian cancer cell lines with natural expression of uPA, PAI-1, and urokinase receptor showed substantial migration and invasion compared to other cell lines that lack expression of these proteins. However, overexpression of active wild-type PAI-1, but not P14-PAI-1 (T333R), in these cell lines showed reduced migration and invasion. Since vitronectin binding by both forms of PAI-1 is equivalent, these results imply that PAI-1-vitronectin interactions are less critical in altering migration and invasion. Our results show that the in vitro migratory and invasive phenotype in these breast and ovarian cancer cell lines is reduced by active PAI-1 due to its ability to inhibit plasminogen activation.  相似文献   

4.
Cytokeratins are one group of intermediate filament proteins responsible for the integrity of cell structure, and have been recently reported to play a role in conferring a drug resistance phenotype. MAb Cx-99 is a monoclonal antibody exhibiting the specificity toward its corresponding antigen which was recently identified as the cytokeratin-19 protein. In the present study, we found that the level of cytokeratin-19 in cervical cancer cells could be decreased by incubation of cancer cells with MAb Cx-99. The reduction of cytokeratin-19 level had a killing effect on cervical carcinoma SIHA and HeLa S3 cell lines. The DNA ladder pattern, convoluted nuclei and blebbing morphology were observed with these cells after exposure to MAb Cx-99 for 72 h, suggesting that the cytotoxic mechanism of reduced cytokeratin-19 was mediated by induction of apoptosis. Moreover, the MAb Cx-99 treatment could increase the cytotoxicities of cancer chemotherapeutic agents such as cisplatin and vinblastine to both cervical carcinoma cell lines. The LD80 values were at least 15-fold reduced when cancer cells were treated with cisplatin or vinblastine in the presence of MAb Cx-99. These results suggest that the functional role of cytokeratin-19 was associated with the apoptosis prevention and drug resistance of cervical cancer cells.  相似文献   

5.
Prostate derived ETS factor (PDEF) is an ETS (epithelial-specific E26 transforming sequence) family member that has been identified as a potential tumor suppressor. In multiple invasive breast cancer cells, PDEF expression inhibits cell migration by preventing the acquisition of directional morphological polarity conferred by changes in cytoskeleton organization. In this study, microarray analysis was used to identify >200 human genes that displayed a common differential expression pattern in three invasive breast cancer cell lines after expression of exogenous PDEF protein. Gene ontology associations and data mining analysis identified focal adhesion, adherens junctions, cell adhesion, and actin cytoskeleton regulation as cell migration-associated interaction pathways significantly impacted by PDEF expression. Validation experiments confirmed the differential expression of four cytoskeleton-associated genes with known functional associations with these pathways: uPA, uPAR, LASP1, and VASP. Significantly, chromatin immunoprecipitation studies identified PDEF as a direct negative regulator of the metastasis-associated gene uPA and phenotypic rescue experiments demonstrate that exogenous urokinase plasminogen activator (uPA) expression can restore the migratory ability of invasive breast cancer cells expressing PDEF. Furthermore, immunofluorescence studies identify the subcellular relocalization of urokinase plasminogen activator receptor (uPAR), LIM and SH3 protein (LASP1), and vasodilator-stimulated protein (VASP) as a possible mechanism accounting for the loss of morphological polarity observed upon PDEF expression.  相似文献   

6.
Cytokeratin-19 is an intermediate filament protein associated with the integrity of cell structure, and its elevated expression has been reported to correlate with the disease progression of oesophagus and lung cancers. In this study, we examined the level of cytokeratin-19 in five cervical cancer cell lines by immunobinding and Western blotting analyses. Compared with two control cell lines, FS-4 (foreskin cell line) and G9T (glioma cell line), all five cervical carcinoma cell lines (Caski, CC7T, ME180, HeLa and SIHA) showed higher cytokeratin-19 expression. By double-staining flow cytometry, expression of cytokeratin-19 in cervical cancer cells was suggested to be in a cell cycle-independent manner. Furthermore, we could specifically localize the SIHA cell-derived tumours in nude mice by injecting with cytokeratin-19-recognized radiolabelled MAb Cx-99 antibody, suggesting the possibility of using cytokeratin-19 as a marker of cervical carcinoma. A clinical investigation was therefore performed on 19 patients (11 patients with cervical carcinoma and eight patients with benign neoplasia). In the 11 patients having cervical carcinoma, all eight patients with advanced stages and one out of three patients with early stage diseases showed higher cytokeratin-19 protein contents than the other 10 patients with benign neoplasia. This suggested that elevation of cytokeratin-19 level was associated with cervical cancer staging. In addition, we have studied the biological significance of elevated cytokeratin-19 level in malignant cervical cancer. The apoptotic rate of cervical carcinoma cells in response to cisplatin was increased if their cellular cytokeratin-19 level was reduced by specific antibody MAb Cx-99. These results indicated that elevation of cytokeratin-19 expression could associate with the apoptotic resistance and malignant progression of cervical carcinoma. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
NCAM: a surface marker for human small cell lung cancer cells   总被引:5,自引:0,他引:5  
Immunocytochemical and immunochemical techniques were used to study the expression of the neural cell adhesion molecule (NCAM) by human lung cancer cell lines. Intense surface staining for NCAM was found at light and electron microscopic levels on small cell lung cancer cells. The NCAM polypeptide of Mr 140,000 (NCAM 140) was detected by immunoblotting in all of 7 small cell lung cancer cell lines examined and in one out of two of the closely related large cell cancer cell lines: it was not detected in cell lines obtained from one patient with a mesothelioma, in two cases of adenocarcinoma, nor in two cases of squamous cell cancer. In contrast, neuron-specific enolase was found by immunoblotting in all the lung cancer cell lines tested and synaptophysin in all but the adenocarcinoma cell lines. These antigens were localized intracellularly. The specific expression of NCAM 140 by human small and large cell lung carcinomas suggests its potential as a diagnostic marker.  相似文献   

8.
针对uPA的siRNA对人乳腺癌细胞侵袭的抑制作用   总被引:1,自引:1,他引:0  
目的:通过RNA干涉的方法抑制乳腺癌细胞中uPA的表达,观察uPA的表达抑制后对肿瘤细胞的体外侵袭能力的影响。方法:(1)构建可以表达针对uPA的siRNA的干涉载体,转染高侵袭性人乳腺癌细胞系MDA-MB231,G418抗性筛选,挑选单克隆株;(2)分别通过RT-PCR和WesternBlot的方法检测uPA的表达;(3)平板克隆形成试验检测转染前后肿瘤细胞的克隆形成能力;4BovdenchamberAssay检测肿瘤细胞体外侵袭能力。结果:(1)可以稳定表达针对uPA的siRNA的单克隆株,uPA的表达水平显著下降;(2)转染了针对uPA的siRNA的单克隆株的克隆形成能力降低;(3)转染了针对uPA的siRNA的单克隆株体外侵袭能力与原代细胞MDA-MB231相比明显受到抑制。结论:uPA在人乳腺癌侵袭行为中发挥重要的作用,针对uPA的siRNA可以显著降低uPA的表达,从而抑制肿瘤细胞的侵袭,可望成为抗肿瘤侵袭治疗的一种有效手段。  相似文献   

9.
10.
The effects of differentiation-modulating drugs were studied on the expression of intermediate filaments (IFs) in the human K562 erythroleukemic cell line. The untreated cells contained typical cytoplasmic coiling bundles, positive for both vimentin and cytokeratin as judged by indirect immunofluorescence microscopy with monoclonal antibodies (Mabs). Some of the cells also showed bright immunoreactivity for epithelial membrane antigen (EMA), as revealed with a Mab and polyclonal antiserum. When exposed to hemin or to sodium butyrate, most of the cells became cytokeratin negative within 3 days and showed dispersion of vimentin fibrils. Upon exposure to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), the amount of both vimentin and cytokeratin appeared to be greatly increased within 3 days and was found both in dispersed cytoplasmic fibrils, in large spherical, eccentric aggregates, as well as in cytoplasmic fibrils in cells spreading on fibronectin. TPA induced a complete loss of proliferation, as judged by immunostaining with the Mab Ki-67. The effects of TPA were found to be irreversible and could be induced by only a short exposure to the drug. Western blotting analysis and monoclonal antibodies to individual cytokeratins revealed that untreated K562 cells expressed Mr 52,000 (No. 8), 46,000 (No. 18), and 40,000 (No. 19) cytokeratin polypeptides, which disappeared when the cells were exposed to hemin or to sodium butyrate to induce erythroid differentiation but were greatly enhanced when exposed to TPA. The monoclonal anti EMA antibody reacted in K562 cells with a single Mr 320,000 polypeptide that was also revealed in MCF-7 breast carcinoma cells. Human bone marrow cells or other leukemic cell lines with erythroid differentiation capacity (HEL and KG-1) did not contain cytokeratin- or EMA-immunoreactive cells, suggesting that in K562 cells these properties may rather represent abnormal cytodifferentiation or retrodifferentiation toward early embryonic mesenchymal cells, than a more general expression of epithelial features in human leukemic cells.  相似文献   

11.
Binding of urokinase-type plasminogen activator (uPA) to its receptor, uPAR, in estrogen receptor-α (ERα) expressing breast cancer cells, transiently activates ERK downstream of FAK, Src family kinases, and H-Ras. Herein, we show that when uPAR is over-expressed, in two separate ERα-positive breast cancer cell lines, ERK activation occurs autonomously of uPA and is sustained. Autonomous ERK activation by uPAR requires H-Ras and Rac1. A mutated form of uPAR, which does not bind vitronectin (uPAR-W32A), failed to induce autonomous ERK activation. Expression of human uPAR or mouse uPAR but not uPAR-W32A in MCF-7 cells provided a selection advantage when these cells were deprived of estrogen in cell culture for two weeks. Similarly, MCF-7 cells that express mouse uPAR formed xenografts in SCID mice that survived and increased in volume in the absence of estrogen supplementation, probably reflecting the pro-survival activity of phospho-ERK. Autonomous uPAR signaling to ERK was sensitive to the EGFR tyrosine kinase inhibitors, Erlotinib and Gefitinib. The transition in uPAR signaling from uPA-dependent and transient to autonomous and sustained is reminiscent of the transformation in ErbB2/HER2 signaling observed when this gene is amplified in breast cancer. uPAR over-expression may provide a pathway for escape of breast cancer cells from ERα-targeting therapeutics.  相似文献   

12.
Whether immunocytochemical studies of malignant pleural effusions due to breast cancer would increase the diagnostic yield as compared with conventional effusion cytology was examined in 30 cases with biopsy-proven metastatic spread to the pleura. Conventional cytology was performed on air-dried smears as well as on cytocentrifuge preparations stained with the May-Grünwald-Giemsa stain. Immunocytochemistry was performed with monoclonal antibodies against carcinoembryonic antigen (CEA), epithelial membrane antigen (EMA) and human leukocyte antigen (HLA) and the peroxidase-antiperoxidase technique on glass slides after Ficoll-Hypaque centrifugation. By conventional cytology, 13 cases (43%) were positive for malignant cells, 6 cases (20%) were suspicious, and 11 cases (37%) were negative. In marked contrast, all 30 cases were immunocytologically positive for malignancy. Tumor cells in all cases demonstrated a positive reaction for EMA. Some mesothelial cells were also positive for EMA, but their reaction pattern was clearly distinguishable from that of the tumor cells. Twenty-one cases (70%) also showed CEA-positive tumor cells; mesothelial cells never reacted with CEA. Some tumor cells showed a loss of HLA expression. In conclusion, this immunocytologic method can be recommended as a routine procedure for greatly increasing the diagnostic yield of cytology in pleural effusions due to breast cancer.  相似文献   

13.
Overexpression of urokinase plasminogen activator (uPA) and its receptor (uPAR) has been well documented in a wide variety of tumor cells. In breast cancer, expression of uPA/uPAR is essential for tumor cell invasion and metastasis. However, the mechanism responsible for uPA/uPAR expression in cancer cells remains unclear. In the studies reported here, we show that endogenous p38 MAPK activity correlates well with breast carcinoma cell invasiveness. Treatment of highly invasive BT549 cells with a specific p38 MAPK inhibitor SB203580 diminished both uPA/uPAR mRNA and protein expression and abrogated the ability of these cells to invade matrigel, suggesting that p38 MAPK signaling pathway is involved in the regulation of uPA/uPAR expression and breast cancer cell invasion. We also demonstrated that SB203580-induced reduction in uPA/uPAR mRNA expression resulted from the de- stabilization of uPA and uPAR mRNA. Finally, by selectively inhibiting p38alpha or p38beta MAPK isoforms, we demonstrate that p38alpha, rather than p38beta, MAPK activity is essential for uPA/uPAR expression. These studies suggest that p38alpha MAPK signaling pathway is important for the maintenance of breast cancer invasive phenotype by promoting the stabilities of uPA and uPAR mRNA.  相似文献   

14.
Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.  相似文献   

15.
Evidence has accumulated that invasion and metastasis in solid tumors require the action of tumor-associated proteases, which promote the dissolution of the surrounding tumor matrix and the basement membranes. Receptor-bound urokinase-type plasminogen activator (uPA) appears to play a key role in these events. uPA converts plasminogen into plasmin and thus mediates pericellular proteolysis during cell migration and tissue remodeling under physiological and pathophysiological conditions. uPA is secreted as an enzymatically inactive proenzyme (pro-uPA) by tumor cells and stroma cells. uPA exerts its proteolytic function on normal cells and tumor cells as an ectoenzyme after having bound to a high-affinity cell surface receptor. After binding, pro-uPA is activated by serine proteases (e.g. plasmin, trypsin or plasma kallikrein) and by the cysteine proteases cathepsin B or L, resp. Receptor-bound enzymatically active uPA converts plasminogen to plasmin which is bound to a different low-affinity receptor on tumor cells. Plasmin then degrades components of the tumor stroma (e.g. fibrin, fibronectin, proteoglycans, laminin) and may activate procollagenase type IV which degrades collagen type IV, a major part of the basement membrane. Hence receptor-bound uPA will promote plasminogen activation and thus the dissolution of the tumor matrix and the basement membrane which is a prerequisite for invasion and metastasis. Tissues of primary cancer and/or metastases of the breast, ovary, prostate, cervix uteri, bladder, lung and of the gastrointestinal tract contain elevated levels of uPA compared to benign tissues. In breast cancer uPA and PAI-1 antigen in tumor tissue extracts are independent prognostic factors for relapse-free and overall survival.  相似文献   

16.
Small cell lung cancer (SCLC) is an aggressive form of lung cancer associated with cigarette smoking and presently accounts for approximately 20% of all lung cancer cases. SCLC cells derive from a neuroendocrine origin and therefore their antigenic profile coincides, to a great extent, with that of neuroendocrine cells. Multiple attempts to generate SCLC-specific MoAbs during the past decade have failed because all SCLC-specific MoAbs isolated also react against neuroendocrine tissues or normal immune cells. Cross-reactivity with normal antigens raises safety concerns due to the inevitable toxicity of such interactions and the dreaded effects. The concept of DIAAD trade mark ( Differential Immunization for Antigen and Antibody Discovery) provides for an immune response that can be effectively focused on cancer antigens. The object is to overcome obstacles resulting from an antigenic hierarchical pattern biased towards a response to dominant antigens in order to induce a robust immune response to cancer antigens. Cancer antigens are weak or nonimmunogenic molecules. Due to the fact that the immune system responds more strongly to immunodominant antigens than to weak immunogenic antigens, cancer cell proliferation is unencumbered. DIAAD employs protocols of induction of tolerance and immunity, conducted in sequential order to "biologically subtract" the immune response of dominant antigens expressed by normal cells. This biological subtraction is achieved in a laboratory animal by first eliminating the immune response to the normal cells or closely related cancer cells, followed by immunization of the same laboratory animal with diseased cells. This procedure directs the immune response exclusively towards antigens expressed by the diseased and not the normal cells. Our objective was to use DIAAD to generate monoclonal antibodies specific to SCLC antigens that are not shared by neuroendocrine cells by contrasting a pool of human SCLC cell lines with a pool of human neuroendocrine cancer cell lines. Four monoclonal antibodies reacted strongly and exclusively with SCLC cells and identified a membrane molecule comprising a single chain glycoprotein. Two of four antibodies were selected for a detailed analysis that revealed a narrow tissue specificity of antigen expressed by colon, lung, and pancreatic cancers (less than 20% staining was found on breast, ovarian and prostate cancer). These antibodies did not bind to various other cancers such as kidney, carcinoid, lymphoma, sarcoma, adrenal, liver, melanoma, seminoma, leiomyoma, basal cell cancer, or undifferentiated cancer. The epitope recognized by the selected MoAbs was destroyed with the removal of carbohydrates from SCLC cells. This result does not exclude the possibility of protein-carbohydrate cooperation in epitope recognition. However, it strongly suggests the pivotal role of carbohydrates in antibody binding to this molecule. Upon binding to the extracellular molecule on SCLC cells, the antibodies were shown to internalize. A low or insignificant level of internalization was recorded following incubation of the antibodies with neuroendocrine-derived tumors. The capacity of these antibodies to internalize upon binding the extracellular receptors renders them potential candidates for prodrug or immunotoxin-targeted therapeutics. In a qualitative experiment involving immunoaffinity purification, the SCLC antigen was shown to be differentially detected in sera of SCLC patients. Plans are being generated to explore the possible utility of this novel SCLC-specific antigen recognized by the above MoAbs as a new biomarker for early diagnosis of the disease, as well as for therapeutic intervention for SCLC.  相似文献   

17.
Trabectedin, a tetrahydroisoquinoline alkaloid derived from a Caribbean tunicate Ecteinascidia turbinata, has been shown to have antitumor effects. In this study, we assessed the possible anti-angiogenic effects of trabectedin on human umbilical vein endothelial cells (HUVECs) and breast cancer cell lines. An XTT cell viability assay was used to determine cytotoxicity. A scratch assay was used to detect the migration of cells after trabectedin treatment. Angiogenic cytokine profiles of breast cancer cell lines, before and after treatment with trabectedin, were investigated using an angiogenesis antibody array. Changes in mRNA expression levels of VEGF were evaluated using qRT-PCR. Trabectedin inhibited the viability of HUVECs and breast cancer cells in a concentration- and time-dependent manner. The migration of both HUVECs and breast cancer cells was suppressed by trabectedin treatment. Angiogenic cytokines which are known to regulate tumorigenicity and angiogenesis, such as GM-CSF, IGFBP-2, VEGF, and uPA, were inhibited, while several anti-angiogenic cytokines such as TIMP-1 and Serpin E1were induced in breast cancer cells. Furthermore, expression levels of VEGF mRNA were inhibited in all breast cancer cells tested. Although additional studies are needed to elucidate the molecular mechanisms underlying the anti-angiogenic activity of trabectedin, our results suggest that trabectedin may act as a potential anti-angiogenic agent in breast cancer cells.  相似文献   

18.
3,3′‐Diindolylmethane (DIM) is a known anti‐tumor agent against breast and other cancers; however, its exact mechanism of action remains unclear. The urokinase plasminogen activator (uPA) and its receptor (uPAR) system are involved in the degradation of basement membrane and extracellular matrix, leading to tumor cell invasion and metastasis. Since uPA‐uPAR system is highly activated in aggressive breast cancer, we hypothesized that the biological activity of B‐DIM could be mediated via inactivation of uPA‐uPAR system. We found that B‐DIM treatment as well as silencing of uPA‐uPAR led to the inhibition of cell growth and motility of MDA‐MB‐231 cells, which was in part due to inhibition of VEGF and MMP‐9. Moreover, silencing of uPA‐uPAR led to decreased sensitivity of these cells to B‐DIM indicating an important role of uPA‐uPAR in B‐DIM‐mediated inhibition of cell growth and migration. We also found similar effects of B‐DIM on MCF‐7, cells expressing low levels of uPA‐uPAR, which was due to direct down‐regulation of MMP‐9 and VEGF, independent of uPA‐uPAR system. Interestingly, over‐expression of uPA‐uPAR in MCF‐7 cells attenuated the inhibitory effects of B‐DIM. Our results, therefore, suggest that B‐DIM down‐regulates uPA‐uPAR in aggressive breast cancers but in the absence of uPA‐uPAR, B‐DIM can directly inhibit VEGF and MMP‐9 leading to the inhibition of cell growth and migration of breast cancer cells. J. Cell. Biochem. 108: 916–925, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
PAI-1 and PAI-2 (plasminogen-activator inibitor types 1 and 2) are inhibitors of cell surface uPA (urokinase plasminogen activator). However, tumour expression of PAI-1 and PAI-2 correlates with poor compared with good patient prognosis in breast cancer respectively. This biological divergence may be related to additional functional roles of PAI-1. For example, the inhibition of uPA by PAI-1 reveals a cryptic high-affinity site within the PAI-1 moiety for the VLDLr (very-low-density-lipoprotein receptor), which sustains cell signalling events initiated by binding of uPA to its receptor. These interactions and subsequent signalling events promote proliferation of breast cancer cells. Biochemical and structural analyses show that, unlike PAI-1, the PAI-2 moiety of uPA-PAI-2 does not contain a high-affinity-binding site for VLDLr, although uPA-PAI-2 is still efficiently endocytosed via this receptor in breast cancer cells. Furthermore, global protein tyrosine phosphorylation events were not sustained by uPA-PAI-2 and cell proliferation was not affected. We thus propose a structurally based mechanism for these differences between PAI-1 and PAI-2 and suggest that PAI-2 is able to inhibit and clear uPA activity without initiating mitogenic signalling events through VLDLr.  相似文献   

20.
Metastasis is a leading cause of mortality and morbidity in cancer. Urokinase (uPA), only expressed by the highly invasive cancer cells, has been implicated in invasion, metastases, and angiogenesis of several malignancies including breast cancer. Because uPA expression is strongly correlated with its hypomethylated state, we utilized the uPA gene in the highly invasive MDA-231 human breast cancer cells as a model system to test the hypothesis that pharmacological reversal of the uPA promoter hypomethylation would result in its silencing and inhibition of metastasis. S-Adenosyl-l-methionine (AdoMet) has previously been shown to cause hypermethylation and inhibit demethylation. Treatment of MDA-231 cells with AdoMet, but not its unmethylated analogue S-adenosylhomocysteine, significantly inhibits uPA expression and tumor cell invasion in vitro and tumor growth and metastasis in vivo. The effects of AdoMet on uPA expression were reversed by the demethylating agent 5'-azacytidine, supporting the conclusion that AdoMet effects are caused by hypermethylation. Knockdown of the methyl-binding protein 2 also causes a significant inhibition of uPA expression in vitro and tumor growth and metastasis in vivo. These treatments did not have any effects on estrogen receptor expression, suggesting that inhibition of hypomethylation will not affect genes already silenced by hypermethylation. These data are consistent with the hypothesis that hypomethylation of critical genes like uPA plays a causal role in metastasis. Inhibition of hypomethylation can thus be used as a novel therapeutic approach to silence the pro-metastatic gene uPA and block breast cancer progression into the aggressive and metastatic stages of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号