首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IL-6 is a multifunctional cytokine that regulates cell growth, differentiation, and cell survival. Many tumor cells produce TGF-beta1, which allows them to evade CTL-mediated immune responses. IL-6 antagonizes TGF-beta1 inhibition of CD3 cell activation. However, whether IL-6 restores NK activity, which also is suppressed by TGF-beta1, is not known. We used canine transmissible venereal tumor (CTVT), which produces TGF-beta1, as a model to determine whether IL-6 restores lymphokine-activated killer (LAK) activity. During the progression phase, CTVT cells stop expressing MHC molecules. During the regression phase, the number of surface MHC molecules increases dramatically on about one-third of tumor cells. Tumor cells that stop expressing MHC should be targeted by NK cells. In this study, we found that TGF-beta1 secreted by CTVT cells suppressed LAK cytotoxicity. Interestingly, tumor-infiltrating lymphocytes (TIL) isolated from regressing CTVT secrete high concentrations of IL-6 and antagonize the anti-LAK activity of tumor cell TGF-beta1. TIL also produce IL-6 during progression phase, but the concentration is too low to block the anti-LAK activity of TGF-beta1. There is probably a threshold concentration of IL-6 needed to reverse TGF-beta1-inhibited LAK activity. In addition, in the absence of TGF-beta1, IL-6 derived from TIL does not promote the activity of LAK. This new mechanism, in which TIL manufacture high concentrations of IL-6 to block tumor TGF-beta1 anti-LAK activity, has potential applications in cancer immunotherapy and tumor prognosis.  相似文献   

2.
Summary Tumor-infiltrating lymphocytes (TIL) were isolated from 15 of 20 surgical specimens of transitional cell carcinoma of the urinary bladder, prostate cancer, testicular cancer, Wilms tumor and adrenal cancer. Expansion was carried out in four different culture conditions, each containing 1000 U/ml interleukin-2: RPMI medium with or without 20% (by volume) of lymphokine-activated killer cell (LAK) supernatant and AIM V medium with or without 20% LAK supernatant. The resultant cell populations were then assayed for cytotoxicity against a variety of autologous and allogeneic tumor targets and phenotypic analysis was performed with fluorescein-labeled monoclonal antibodies. TIL growth was unrelated to the initial percentage of lymphocytes or tumor cells present in the enzymatically dispersed specimens or whether fresh or cryopreserved tissue was utilized. Better growth was seen in AIM V than in RPMI medium (P = 0.013); the beneficial effect of the addition of LAK supernatant to RPMI was indicated (P = 0.065), and the addition of LAK supernatant to AIM V did not improve the ability to culture TIL (P = 0.5) from these cancers. TIL in long-term culture were predominantly CD3+. The ratio of CD4+/CD8+ cells varied with time in culture and culture medium, but most cultures eventually became CD4+. Cells bearing B cell, natural killer cell, and macrophage markers disappeared early in culture. Overall 14/15 TIL samples were lytic against one of the autologous and allogeneic targets tested, but specific lysis against the autologous tumor from which it was derived was seen in only one TIL culture originating from a bladder cancer. Our results suggest that TIL can be expanded to therapeutic levels from a variety of urological malignancies and that their potential role in future therapy should be further explored.  相似文献   

3.
Culture of tumor-infiltrating lymphocytes (TIL) containing about 20% BMC2 tumor cells with recombinant human interleukin 2 (rIL-2) resulted in the diminish of tumor cells and the growth of lymphocytes. These IL-2-activated lymphocytes showed a strong cytotoxic activity against not only syngeneic tumor cells but also allogeneic tumor cells. Such broad-reactive killer cells, termed lymphokine-activated killer (LAK) cells, are also inducible from spleen cells by in vitro activation with IL-2. However, LAK cells generated from TIL (TIL-LAK) showed higher cytotoxic activity against BMC2 than LAK cells generated from spleen cells (S-LAK). Furthermore, it was demonstrated that TIL-LAK cells revealed marginal cytotoxic activity against normal Con A blasts and YAC-1 cells as opposed to S-LAK. Flow cytometric analysis of TIL-LAK indicated that TIL-LAK cells mainly consisted of Thy 1.2+, Ly 2+, asialo GM1+ cells. TIL-LAK cells displayed not only in vitro cytotoxicity but also in vivo anti-tumor activity. Furthermore, it was also confirmed that TIL-LAK cells could be induced in autochthonous mouse tumor systems and human gastric tumor systems.  相似文献   

4.
Atsushi Uchida 《Biotherapy》1994,8(2):113-122
The activity of blood lymphocytes to kill autologous freshly isolated tumor cells tested at the time of surgery predicts a favorable clinical course in patients who have primary localized solid tumor and receive curative operation. The strong correlation of autologous tumor killing (ATK) activity with disease-free interval and total survival indicates that ATK activity is a meaningful prognostic indicator and provides evidence for immunological control of tumor growth and metastasis. Although there is no direct evidence that ATK lymphocytes play a critical role in regression of tumor and prevention of tumor regrowth, the lack of ATK activity in patients who relapsed and died may not result from other factors related to their poor performance status, immune functions and tumor characteristics. Clinical trials with ATK induction therapy resulted in an improvement of the clinical outcome in patients who naturally have no such potential. The data indicate that the presence of both natural and induced ATK activity is strongly associated with long-term survival. In addition, adoptive transfer of BRM-induced ATK effector cells resulted in prolongation of survival time even in patients with documented metastatic tumors. Thus, considerable emphasis should be placed on a strategy that induces ATK activityin vivo. Such an approach may provide a new focus for cancer immunotherapy.Abbreviations ATK Autologous tumor killing - BRM biological response modifiers - AIDS acquired immune deficiency syndrome - NK natural killer - LGL large granular lymphocytes - TIL tumor-infiltrating lymphocytes - MHC major histocompatibility complex - TCR T cell antigen receptor - LAK lymphokine-activated killer - IL Interleukin - IFN interferon - TNF tumor necrosis factor - ATKF autologous tumor killing factor - LFA-1 leukocyte function-associated antigen 1 - ICAM-1 intercellular adhesion molecule 1 - mAb monoclonal antibodies  相似文献   

5.
We have analyzed the anticancer efficacy of various subsets of human circulating and tumor-infiltrating lymphocytes (TIL). These studies showed that circulating natural killer (NK) cells mediate the most potent oncolytic activity against a variety of tumor targets, after enrichment or stimulation with interleukin-2 (IL-2). Interestingly, NK cell oncolytic activity was directed also against tumor targets frequently designated as 'NK-resistant'. This indicates that NK cells display a broader spectrum of killing than is commonly recognized. TIL did not display any tumoricidal activity when unstimulated, but acquired cytotoxic potential after activation with IL-2. Comparative studies of TIL and circulating lymphocytes from patients with ovarian cancer demonstrated that these two groups of lymphocytes manifested similar levels of cytotoxicity and the same spectrum of target cell killing. No specificity in autologous tumor cell killing was displayed by TIL; instead, TIL were effective against autologous as well as allogeneic tumor targets. The lack of TIL tumor specificity was not detected only in ovarian tumors, but was manifested also in renal- and squamous-cell cancers. Characterization studies demonstrated that the primary oncolytic cells in the periphery and among TIL are NK cells. T lymphocytes displayed some, but rather negligible cytotoxic activity. In contrast, when IL-2-activated NK and T cells were analyzed for lytic activity against normal hematopoietic cells, T cells displayed high levels of bone marrow killing. The anti-bone marrow lytic activity of IL-2-activated T lymphocytes may be harmful after therapy with conventionally prepared lymphokine-activated killers. In light of these observations, new directions to adoptive immunotherapy are discussed.  相似文献   

6.
Summary The purpose of these studies was to compare local and systemic human lymphokine activated killer (LAK) and natural killer (NK) cytotoxic activity and to determine its modulation by biologic agents. Local immunity may be an important component in limiting local tumor growth. Therefore, as a model for studying immune function in the local compartment, we assessed NK activity of lymphocytes present at the site of human tumors and in peripheral blood (PBL). We extracted tumor infiltrating lymphocytes (TIL) and PBL from patients with pulmonary tumors and compared NK activity and response to the biological modifiers gamma interferon (IFN-), indomethacin (INDO), and interleukin 2 (IL-2). We also studied TIL and PBL LAK activity using the NK-resistant M14 target cells and determined the TIL response to IL-2, plus IFN-. Titration of K562 targets in a 51Cr release assay revealed that untreated TIL have low cytotoxicity (4.32%) compared to untreated PBL (34.3%, P=<0.001). This low level of TIL NK activity was not affected by IFN-, INDO, or IL-2 at 1 h. However, at 3 days of culture, IL-2 with or without exogenous IFN- significantly increased TIL NK ctotoxicity (20.5%, P=0.02 without IFN- and 32.52 lytic units (LU), P=<0.02 with IFN-). Untreated TIL and PBL both had low cytotoxicity against M14 targets (1.08 LU and 1.26 LU), respectively. After 3 days culture with IL-2 plus IFN-, both TIL and PBL LAK cytotoxicity were increased (14.34 LU and 40.63 LU). We conclude that local NK and LAK activity is intrinsically low. However, this activity can be modulated by biologic agents, thus giving hope for the development of local antitumor effectors capable of in vivo tumor control.  相似文献   

7.
Lymphokine-activated killer (LAK) cells are peripheral blood lymphocytes (PBLs) that possess the ability to kill target cells in a non-major histocompatibility complex (MHC)-restricted manner. Both NK and T cells can be stimulated with interleukin-2 (IL-2) to become LAK cells. We previously reported that the interaction of LAK cells with tumor cells also induces the secretion of interferon-gamma (IFN-gamma). The NK subset of LAK (LAK-NK) cells is stimulated by tumor cells to secrete IFN-gamma in a non-MHC-restricted manner while the T cell subset of LAK (LAK-T) cells is stimulated to secrete IFN-gamma upon cross-linking of the T cell receptor (TCR)-CD3 complex. We here report that LAK-T cells stimulated with anti-CD3 mAbs and tumor cells secrete two additional cytokines, tumor necrosis factor-alpha (TNF-alpha) and TNF-beta/lymphotoxin (TNF-beta). In addition, we demonstrate that at least four other structurally unrelated molecules, in addition to the TCR-CD3 complex, on LAK-T cells participate in the stimulation of IFN-gamma, TNF-alpha, and TNF-beta production. These molecules are the lymphocyte function associated antigen-1 (LFA-1), lymphocyte function associated antigen-2 (LFA-2), CD44, and CD45. LFA-1 is an integrin, LFA-2 is a member of the immunoglobulin supergene family, CD44 is homologous to the cartilage link proteins, and CD45 is a tyrosine phosphatase. Ligands to three of these molecules have been identified; ICAM-1, LFA-3, and hyaluronic acid binding to LFA-1, LFA-2, and CD44, respectively. LFA-1, LFA-2, and CD44 are reported to function both as adhesion molecules and as costimulators in resting T cells. Our data suggest that these three molecules enhance IFN-gamma, TNF-alpha, and TNF-beta production by augmenting LAK-T cell to tumor cell adhesion and also by functioning as costimulators.  相似文献   

8.
Vascular adhesion protein-1 (VAP-1) is an amine oxidase and adhesion receptor that is expressed by endothelium in the human liver. The hepatic sinusoids are perfused by blood at low flow rates, and sinusoidal endothelium lacks selectin expression and has low levels of CD31, suggesting that VAP-1 may play a specific role in lymphocyte recruitment to the liver. In support of this we now report the constitutive expression of VAP-1 on human hepatic sinusoidal endothelial cells (HSEC) in vitro and demonstrate that VAP-1 supports adhesion and transmigration of lymphocytes across these cells under physiological shear stress. These are the first studies to report the function of VAP-1 on primary human endothelial cells. Under static conditions lymphocyte adhesion to unstimulated HSEC was dependent on VAP-1 and ICAM-2, whereas adhesion to TNF-alpha-stimulated HSEC was dependent on ICAM-1, VCAM-1, and VAP-1. Under conditions of flow, blocking VAP-1 reduced lymphocyte adhesion to TNF-alpha-treated HSEC by 50% and significantly reduced the proportion of adherent lymphocytes that transmigrated across cytokine or LPS-activated endothelium. In addition, inhibition of the amine oxidase activity of VAP-1 reduced both adhesion and transmigration of lymphocytes to a level similar to that seen with VAP-1 Ab. Thus, VAP-1 can support transendothelial migration as well as adhesion, and both functions are dependent on its enzymatic activity. In the absence of selectins and CD31, VAP-1 may play a specific role in lymphocyte recruitment via hepatic sinusoidal endothelium. Moreover, since VAP-1 is induced on nonhepatic endothelium in response to inflammation, its ability to support lymphocyte transendothelial migration may be an important systemic function of VAP-1.  相似文献   

9.
Granulocyte extravasation from the blood into tissues is a prerequisite for a proper inflammatory response. It is regulated by a multistep adhesion cascade consisting of successive contacts between leukocyte surface receptors and their endothelial ligands on vessels. Vascular adhesion protein 1 (VAP-1) is an endothelial surface glycoprotein with two functions. It is an enzyme (monoamine oxidase) and an adhesion molecule for lymphocytes. Its function in binding of granulocytes or in leukocyte trafficking into sites of inflammation in vivo has remained unknown. Here we show that treatment of rabbits with anti-VAP-1 monoclonal antibodies abrogates approximately 70% of granulocyte extravasation into a site of an experimental inflammation. Using intravital microscopy, VAP-1 blockade is shown to increase the velocity of the rolling granulocytes and the frequency of their jerky skippings during the rolling. In addition, the number of firmly bound leukocytes decreased by 44% when VAP-1 was rendered nonfunctional. Our results suggest that VAP-1 functions as a molecular brake early in the adhesion cascade and consequently decreases the firm adherence; it may also directly influence the transmigration step. These data elucidate a new interplayer in the granulocyte extravasation process and provide a novel physiological function for a member of the monoamine oxidase family.  相似文献   

10.
The present investigation demonstrates that leukoregulin, a cytokine secreted by natural killer (NK) lymphocytes up-regulates the sensitivity of tumor cells to lymphokine-activated killer (LAK) cell cytotoxicity. It has been previously established that leukoregulin increases the sensitivity of sarcoma, carcinoma and leukemia cells to natural killer (NK) cell cytotoxicity. Tumor cells were treated with leukoregulin for 1 h at 37 degrees C and tested for sensitivity to NK and LAK cytotoxicity in a 4-h chromium-release assay. NK-resistant Daudi, QGU and C4-1 human cervical carcinoma cells became sensitive to NK cytotoxicity after leukoregulin treatment, and their sensitivity to LAK was increased two- to sixfold. Y-79 retinoblastoma cells, which are moderately sensitive to NK and very sensitive to LAK, became increasingly sensitive (two- to four-fold) to both NK and LAK cell cytotoxicity. Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF), recombinant interleukin-1 (alpha and beta), recombinant interferon gamma, recombinant tumor necrosis factor or combinations of the latter two failed to up-regulate tumor cell sensitivity to NK and LAK cell cytotoxicity. However, treatment with recombinant interferon gamma for 16-18 h, GM-CSF and interleukin-1 beta for 1 h induced a state of target cell resistance to both NK and LAK cell cytotoxicity. Leukoregulin may have an important physiological function in modulating NK and LAK cell cytotoxicity by increasing the sensitivity of target cells to these natural cellular immunocytotoxicity mechanisms.  相似文献   

11.
We established a cell line (STKM-1) from tumor cells obtained from carcinomatous pleural effusion of a gastric cancer patient. The lymphocytes separated from her peripheral blood or pleural effusion were cryopreserved and immunological experiments were performed after the establishment of the cell line. They were treated with IL-2 or with both IL-2 and mitomycin C (MMC)-treated autologous STKM-1 cells. The cytolytic activity against STKM-1 cells was elevated in lymphocytes cultured with IL-2, and was more prominently augmented in lymphocytes cultured with both IL-2 and MMC-treated STKM-1 cells. The elevation in cytolytic activity was more marked with pleural effusion lymphocytes than with the peripheral blood lymphocytes. The results suggest that the lymphocytes obtained from the pleural effusion would be an excellent source for adoptive immunotherapy.Abbreviations IL-2 interleukin-2 - LAK lymphokine activated killer - MLTC mixed lymphocyte tumor cell culture - MMC mitomycin C - MoAbs monoclonal antibodies - TIL tumor infiltrating lymphocytes  相似文献   

12.
The effects of IL-2 on the expression of homing receptors by lymphocytes of NK or lymphokine activated killer (LAK) cell derivation has not yet been evaluated. We developed a murine model to evaluate the potential of LAK cells to localize into peripheral lymph nodes since LAK cells are used to treat human cancers which have metastasized to these tissues. Using a frozen section binding assay, LAK cell adhesion to the lymph node microvasculature was easily demonstrable. Inhibition studies demonstrated that LAK cell binding to lymph nodes was mediated by mechanisms previously described in T cells. LAK cell surface expression of the 85- to 95-kDa homing receptor recognized by the antibody MEL-14 on LAK cells was assessed by indirect immunofluorescence. The percentage of cells which bound MEL-14 decreased slightly over 3 days of IL-2 exposure (from 73 to 60%), particularly in the large granular lymphocyte (cytotoxic effector) subpopulation (45% MEL-14+). The expression of another homing-related molecule, leukocyte function-associated Ag-1, markedly increased during activation of LAK cells. Despite the expression of these homing receptors, we observed almost no LAK cell localization into lymph nodes in vivo. Furthermore, IL-2 pretreatment of recipient animals did not increase the adhesion of LAK cells to lymph node microvasculature or enhance their extravasation. IL-2 activation of non-T, non-B lymphocytes results in significant changes in both the expression and function of cell surface homing receptors. Our results indicate that in vitro analysis does not always predict in vivo localization potential.  相似文献   

13.
We studied the susceptibility of autologous and allogeneic tumors to lysis by human tumor infiltrating lymphocytes (TIL) after pre-incubation of the tumors with human rIFN-gamma and human rTNF-alpha. Preincubation of the tumor lines with IFN-gamma or TNF enhanced susceptibility to lysis significantly; the combination of both cytokines was more effective than either alone. Pretreatment for at least 24 h was required to enhance lytic susceptibility and maximal lysis was observed after pretreatment for 48 to 72 h. Highly specific TIL lysed only their autologous tumor targets and failed to lyse cytokine pretreated allogeneic tumor cells. In TIL populations with varying specificity, cytokine pretreatment of targets enhanced autologous lysis as well as allogeneic lysis. This cytokine-mediated effect could also be observed in a lectin-dependent cytotoxicity assay and did not correlate directly with enhanced expression of MHC class I Ag or the adhesion molecules LFA-3 and ICAM-1. These results suggest that enhancement of lysis may occur at a postbinding stage by making the target cell more sensitive to the cytotoxic factors delivered by the killer cell. The fact that lysis of cytokine treated targets by cells with LAK activity was not enhanced suggests that cells with lymphokine-activated killer activity and tumor-derived T cells kill tumor targets via different mechanisms.  相似文献   

14.
Cell adhesion molecules (CAM) participate in interactions between lymphocytes, accessory cells, and target cells that are critical in the generation of effective immune responses. To characterize the involvement of CAM in NK and lymphokine activated killer (LAK) activities, we examined the expression of several CAM by freshly isolated human NK cells and by NK cells activated in vitro with IL-2, and compared this to CAM expression by T lymphocytes under similar conditions. Freshly isolated human NK cells were uniformly LFA-3 (CD58)+ and expressed two to three-fold higher surface levels of LFA-1 (CD11a/CD18) than resting T lymphocytes. More NK cells than T cells also expressed phenotypically detectable levels of intercellular adhesion molecule-1 (CD54). After in vitro incubation with IL-2, human NK cells demonstrated four- to sixfold increases in surface levels of CD11a/CD18, CD2, CD54, CD58, and the NK cell-associated Ag NKH-1 (CD56). Furthermore, essentially all NK cells became CD54+ within 3 days of exposure to IL-2. T cells did not demonstrate comparable up-regulation of CAM after incubation with IL-2. Increases in NK cell CAM expression were associated with enhanced formation of E:T cell conjugates, enhanced killing of NK-sensitive targets, and the induction of cytotoxicity for previously NK-resistant targets (LAK activity). The LAK activity induced by exogenous IL-2 could be partially inhibited by anti-CD2, anti-CD11a, or anti-CD54 antibodies and almost completely abrogated by anti-CD2 and anti-CD11a in combination. These studies suggest that CAM play a central role in the regulation of NK cytolysis, and that changes in CAM expression may alter the target cell specificity of activated NK effectors.  相似文献   

15.
A streptococcal preparation, OK-432, was orally administered at a dose of 5 KE to patients with gastric or colorectal cancer for 7–14 days before their operations, and its immunomodulatory effects on peripheral blood lymphocytes (PBL), regional node lymphocytes (RNL) and tumor infiltrating lymphocytes (TIL) were assessed. The group treated with OK-432 included 8 gastric and 6 colorectal cancer patients, and the control group included 8 gastric and 8 colorectal cancer patients. The NK cell activity of PBL was significantly augmented by the oral administration of OK-432, and the proportions of Leu 7+ and Leu 11+ cells in PBL also increased. The responses of PBL and TIL to autologous tumor extracts in the presence of interleukin-2 were enhanced after the oral administration of OK-432. The proportion of OKT8+ cells in PBL increased after treatment with oral OK-432, whereas the proportion in RNL significantly decreased. These results indicate that oral OK-432 affects NK and T cells and may augment the antitumor immunity of patients with gastrointestinal cancer.  相似文献   

16.
Summary We developed a monoclonal antibody (mAb) 211, which recognizes the precursors in peripheral blood of lymphokine-activated killer cells (LAK) induced by recombinant interleukin-2 (rIL-2). In conjunction with complement mAb 211 also eliminates natural killer cells (NK) and a majority of the cytotoxic T lymphocytes. B cells and monocytes do not express the 211 antigen. Since mAb 211 recognized such a large percentage of peripheral blood lymphocytes we examined which 211+ subpopulation was the predominant precursor of rIL-2-induced LAK cells using two-color fluoresence-activated cell sorting (fluorescein-conjugated 211 mAb plus phycoerythrin-CD11b). This method identified the 211+/ CD11b+ population as the predominant phenotype of the rIL-2-induced LAK precursor. In addition, we directly compared the phenotype of the LAK precursor induced by delectinated T-cell growth factor (TCGF) to that induced by rIL-2. The 211-depleted population, which was devoid of NK cells and LAK precursors (inducible by rIL-2), was capable of generating LAK activity when TCGF was used as the source of lymphokine. LAK cells induced by TCGF from the 211-depleted population lysed a fresh sarcoma and an NK-resistant cultured melanoma tumor target but not the Daudi cell line, which was lysed by rIL-2-induced LAK cells. Lymphoid subpopulations, depleted using NKH1a mAb, behaved similarly, generating high levels of lysis against the two solid tumor targets when cultured with TCGF but not with rIL-2. CD 3-depleted populations showed enrichment for LAK precursors using either rIL-2 or TCGF. These results indicate that while rIL-2-induced LAK precursors cannot be separated from cells with NK activity, TCGF-induced LAK cells can be generated from populations of peripheral blood mononuclear cells without NK activity.  相似文献   

17.
Efficient antitumor immune response requires the coordinated function of integrated immune components, but is finally exerted by the differentiated effector tumor-infiltrating lymphocytes (TIL). TIL cells comprise, therefore, an exciting platform for adoptive cell transfer (ACT) in cancer. In this study, we show that the inhibitory carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) protein is found on virtually all human TIL cells following preparation protocols of ACT treatment for melanoma. We further demonstrate that the CEACAM1 homophilic interactions inhibit the TIL effector functions, such as specific killing and IFN-gamma release. These results suggest that CEACAM1 may impair in vivo the antitumor response of the differentiated TIL. Importantly, CEACAM1 is commonly expressed by melanoma and its presence is associated with poor prognosis. Remarkably, the prolonged coincubation of reactive TIL cells with their melanoma targets results in increased functional CEACAM1 expression by the surviving tumor cells. This mechanism might be used by melanoma cells in vivo to evade ongoing destruction by tumor-reactive lymphocytes. Finally, CEACAM1-mediated inhibition may hinder in many cases the efficacy of TIL ACT treatment of melanoma. We show that the intensity of CEACAM1 expression on TIL cells constantly increases during ex vivo expansion. The implications of CEACAM1-mediated inhibition of TIL cells on the optimization of current ACT protocols and on the development of future immunotherapeutic modalities are discussed.  相似文献   

18.
CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.  相似文献   

19.
It is known that IL-2 induces lymphocytes to produce interferon-gamma (IFN-gamma) and this IFN type is particularly efficient in inducing tumor cell resistance to natural killer (NK) cell-mediated lysis. We have investigated the effect of IFN on tumor cell sensitivity to LAK cell-mediated cytotoxicity. Pretreatment of the human K562 leukemia and HHMS melanoma with IFN-gamma and the Daudi lymphoma with IFN-alpha caused a significant reduction in sensitivity to lysis by human LAK cells generated in vitro in the presence of human recombinant IL-2 (100 U/ml). The LAK activity was mediated by cells expressing NK cell markers (CD16,NKH1) as well as by cells with T cell markers (CD3, CD5). IFN-treated K562 cells were protected from lysis mediated by all these populations. Supernatants from LAK cultures containing IFN-gamma were able to induce NK and LAK resistance when used to pretreat K562 overnight. Antibodies to IFN-gamma but not to IFN-alpha were able to neutralize this activity. Taken together, these results indicate that the production of IFN-gamma by LAK cells may be of importance in induction of tumor cell resistance to LAK cell-mediated lysis.  相似文献   

20.
We characterized tumor-infiltrating lymphocytes (TIL) from ascites of patients with ovarian or pancreatic cancer in which the human tumor necrosis factor (TNF) gene was successfully transduced with retrovirus vector. The TNF-gene-transduced TIL (TNF-TIL) from these patients showed a higher level of TNF production and higher cytotoxic activity against K562 and Daudi cells than did neomycin-phosphotransferase-gene-transduced TIL (neo-TIL). Of these TIL preparations, only that from pancreatic cancer was further characterized since it was collected in a relatively large amount. In spite of the fact that the autologous tumor cells showed resistance to soluble TNF, the TNF-TIL clearly demonstrated enhanced cytotoxicity against them as compared with neo-TIL. The enhanced cytotoxicity was ascribed to autocrine effects of secreted TNF on TIL, which included augmentation of adhesion molecule (CD2 and CD11a) and interleukin-2 receptor expression, and elevation of production of interferon , lymphotoxin and granulocyte/macrophage-colonystimulating factor and its paracrine effect on target cells to facilitate them to be more susceptible to TIL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号