首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TO determine the amount of K2Cr2O7 required to produce optimal Giemsa type staining, six 1 g amounts (corrected for dye content) of zinc methylene blue were oxidized with graded quantities of K2Cr2O7 to produce 4, 8, 12, 16, 20 and 24% conversion of methylene blue to azure B. These were heated with a blank control 15 minutes at 100 C in 60-65 ml 0.4 N HCI. cooled, and adjusted to 50 ml to give 20 mg original dye/ml. Aliquots were then diluted to 1% and stains were made by the “Wet Giemsa” technic (Lillie and Donaldson 1979) using 6 ml 1% polychrome methylene blue, 4 ml 1% cosin (corrected for dye content), 2 ml 0.1 M pH 6.3 phosphate buffer, 5 ml acetone, and 23 ml distilled water. The main is added last and methanol fixed blood films are stained immediately for 20-40 min.

For methylene blue supplied by MCB 12-H-29, optimal stains were obtained with preparations containing 20 and 24% conversion of methylene blue to azure B. With methylene blue supplied by Aldrich (080787), 16% conversion of methylene blue to azure B was optimal. Eosinates prepared from a low azure B/methylene blue preparation selected in this way give good stains when used as a Wright stain in 0.3% methanol solution. However, when the 600 mg eosinate solution in glycerol methanol is supplemented with 160 mg of the same azure B/methylene blue chloride the mixture fails to perform well. The HCI precipitation of the chloride apparently produces the zinc methylene blue chloride salt which is poorly soluble in alcohol. It appears necessary to have a zinc-free azure B/methylene blue chloride to supplement the probably zinc-free eosinate used in the Giemsa mixture.  相似文献   

2.
When uninjured cells of Valonia are placed in methylene blue dissolved in sea water it is found, after 1 to 3 hours, that at pH 5.5 practically no dye penetrates, while at pH 9.5 more enters the vacuole. As the cells become injured more dye enters at pH 5.5, as well as at pH 9.5. No dye in reduced form is found in the sap of uninjured cells exposed from 1 to 3 hours to methylene blue in sea water at both pH values. When uninjured cells are placed in azure B solution, the rate of penetration of dye into the vacuole is found to increase with the rise in the pH value of the external dye solution. The partition coefficient of the dye between chloroform and sea water is higher at pH 9.5 than at pH 5.5 with both methylene blue and azure B. The color of the dye in chloroform absorbed from methylene blue or from azure B in sea water at pH 5.5 is blue, while it is reddish purple when absorbed from methylene blue and azure B at pH 9.5. Dry salt of methylene blue and azure B dissolved in chloroform appears blue. It is shown that chiefly azure B in form of free base is absorbed by chloroform from methylene blue or azure B dissolved in sea water at pH 9.5, but possibly a mixture of methylene blue and azure B in form of salt is absorbed from methylene blue at pH 5.5, and azure B in form of salt is absorbed from azure B in sea water at pH 5.5. Spectrophotometric analysis of the dye shows the following facts. 1. The dye which is absorbed by the cell wall from methylene blue solution is found to be chiefly methylene blue. 2. The dye which has penetrated from methylene blue solution into the vacuole of uninjured cells is found to be azure B or trimethyl thionine, a small amount of which may be present in a solution of methylene blue especially at a high pH value. 3. The dye which has penetrated from methylene blue solution into the vacuole of injured cells is either methylene blue or a mixture of methylene blue and azure B. 4. The dye which is absorbed by chloroform from methylene blue dissolved in sea water is also found to be azure B, when the pH value of the sea water is at 9.5, but it consists of azure B and to a less extent of methylene blue when the pH value is at 5.5. 5. Methylene blue employed for these experiments, when dissolved in sea water, in sap of Valonia, or in artificial sap, gives absorption maxima characteristic of methylene blue. Azure B found in the sap collected from the vacuole cannot be due to the transformation of methylene blue into this dye after methylene blue has penetrated into the vacuole from the external solution because no such transformation detectable by this method is found to take place within 3 hours after dissolving methylene blue in the sap of Valonia. These experiments indicate that the penetration of dye into the vacuole from methylene blue solution represents a diffusion of azure B in the form of free base. This result agrees with the theory that a basic dye penetrates the vacuole of living cells chiefly in the form of free base and only very slightly in the form of salt. But as soon as the cells are injured the methylene blue (in form of salt) enters the vacuole. It is suggested that these experiments do not show that methylene blue does not enter the protoplasm, but they point out the danger of basing any theoretical conclusion as to permeability on oxidation-reduction potential of living cells from experiments made or the penetration of dye from methylene blue solution into the vacuole, without determining the nature of the dye inside and outside the cell.  相似文献   

3.
The iron, potassium, sodium and zinc content of commercial samples of the thiazine dyes azure A (C.I. 52005), azure B (C.I. 52010), azure C (C.I. 52002), methylene blue (C.I. 52015), new methylene blue (C.I. 52030), polychrome methylene blue, thionine (C.I. 52000) and toluidine blue (C.I. 52040) have been determined by atomic absorption spectrophotometry. The metal concentration varied widely in the 38 samples examined--iron, potassium, sodium and zinc together comprised between 0.02% and 25.35% of individual samples.  相似文献   

4.
The performances of two standardized Romanowsky stains (azure B/eosin and azure B/methylene blue/eosin) have been compared with each other and with a methylene blue/eosin stain. Visible-light absorbance spectra of various hematological substrates have been measured. These have been analyzed in terms of the quantities of bound azure B, methylene blue and eosin dimers and monomers, and in terms of the CIE color coordinates. It has been found that the addition of methylene blue to azure B/eosin produces little change in performance, at least using these two analytical methods. Methylene blue/eosin does not produce the purplish colorations typical of the Romanowsky effect. This is due not to differences between the spectra of methylene blue and azure B, but to the fact that methylene blue does not facilitate the binding of eosin to cellular substrates to the same extent as azure B.  相似文献   

5.
The performances of two standardized Romanowsky stains (azure B/eosin and azure B/methylene blue/eosin) have been compared with each other and with a methylene blue/eosin stain. Visible-light absorbance spectra of various hematological substrates have been measured. These have been analyzed in terms of the quantities of bound azure B, methylene blue and eosin dimers and monomers, and in terms of the CIE color coordinates. It has been found that the addition of methylene blue to azure B/eosin produces little change in performance, at least using these two analytical methods. Methylene blue/eosin does not produce the purplish colorations typical of the Romanowsky effect. This is due not to differences between the spectra of methylene blue and azure B, but to the fact that methylene blue does not facilitate the binding of eosin to cellular substrates to the same extent as azure B.  相似文献   

6.
The rate of diffusion through the non-aqueous layer of the protoplasm depends largely on the partition coefficients mentioned above. Since these cannot be determined we have employed an artificial system in which chloroform is used in place of the non-aqueous layer of the protoplasm. The partition coefficients may be roughly determined by shaking up the aqueous solutions with chloroform and analyzing with the spectrophotometer (which is necessary with methylene blue because we are dealing with mixtures). This will show what dyes may be expected to pass through the protoplasm into the vacuole in case it behaves like the artificial system. From these results we may conclude that the artificial system and the living cell act almost alike toward methylene blue and azure B, which supports the notion of non-aqueous layers in the protoplasm. There is a close resemblance between Valonia and the artificial system in their behavior toward these dyes at pH 9.5. In the case of Nitella, on the other hand, with methylene blue solution at pH 9.2 the sap in the artificial system takes up relatively more azure B (absorption maximum at 650 mµ) than the vacuole of the living cell (655 mµ). But both take up azure B much more rapidly than methylene blue. A comparison cannot be made between the behavior of the artificial system and that of the living cell at pH 5.5 since in the latter case there arises a question of injury to cells before enough dye is collected in the sap for analysis.  相似文献   

7.
The iron, potassium, sodium and zinc contents of commercial samples of the thiazine dyes azure A (C.I. 52005), azure B (C.I. 52010), azure C (C.I. 52002), methylene blue (C.I. 52015), new methylene blue (GI. 52030), polychrome methylene blue, thionine (C.I. 52000) and toluidme blue (C.I. 52040) have been determined by atomic absorption spectrophotometry.

The metal concentrations varied widely in the 38 samples examined—iron, potassium, sodium and zinc together comprised between 0.02% and 25.35% of individual samples.  相似文献   

8.
Detailed schemes are described for the preparation of purified methylene blue and azure B from commercial samples of methylene blue. Purified methylene blue is obtained by extracting a solution of the commercial product in an aqueous buffer (pH 9.5) with carbon tetrachloride. Methylene blue remains in the aqueous layer but contaminating dyes pass into the carbon tetrachloride. Metal salt contaminants are removed when the dye is crystallized by the addition of hydrochloric acid at a final concentration of 0.25 N. Purified azure B is obtained by extracting a solution of commercial methylene blue in dilute aqueous sodium hydroxide (pH 11-11.5) with carbon tetrachloride. In this pH range, methylene blue is unstable and yields azure B. The latter passes into the carbon tetrachloride layer as it is formed. Metal salt contaminants remain in the aqueous layer. A concentrated solution oa azure B is obtained by extracting the carbon tetrachloride layer with 4.5 X 10(-4)N hydrobromic acid. The dye is then crystallized by increasing the hydrobromic acid concentration to 0.23 N. Thin-layer chromatography of the purified dyes shows that contamination with related thiazine dyes is absent or negligible. Ash analyses reveal that metal salt contamination is also negligible (sulphated ash less than 0.2%).  相似文献   

9.
Starting from ancient reports that rare samples of methylene blue were apparently sufficiently contaminated with azures to give red plasmodial and red purple nuclear chromatin in Chenzinsky type methylene blue eosin stains, it was decided to determine how little azure B would suffice for such staining in methylene blue eosin stains. The traditional 1902 Giemsa had an azure : methylene blue : eosin ratio of about 6 : 3 : 6.3 : 10; Lillie's 1943 formula had a 5 : 7 : 10 ratio. In the current series of tests 5 : 7 : 10 (I), 4 : 8 : 10 (II), 3 : 9 : 10 (III), 2 : 10 : 10 (IV), 1 : 11 : 10 (V), and 0 : 12 : 10 (VI) were used. Malaria and blood stains were better than the standard 5 : 7 : 10 (I) in III, IV and II in that order. Normal and leukemic human blood, mouse blood with Plasmodium berghei, and monkey blood with the CDC strain of Pl. falciparum were used as test materials. The staining mixtures were made from highly purified samples of azure B and methylene blue. Staining mixtures contained 12 ml 0.1% thiazin dye, 10 ml 0.1% eosin, 2 ml each of glycerol, methanol and 0.1 M phosphate buffer pH 6.5, 3 ml acetone as accelerator, and distilled water to make 40 ml; staining times of 10--30 min were used.  相似文献   

10.
Previous studies have suggested that adult tunas have only two visual pigments in their retinas - a rod pigment with a wavelength at maximum absorbance ( λmax ) around 485 nm and one with similar λmax in both twin and single cones inferred from extraction data. Using microspectrophotometry we confirm the presence of a λmax 483 nm visual pigment in the rods of adult yellowfin tuna and a λmax 485 nm pigment in both members of the twin cones. However, all single cones contain a previously undetected violet visual pigment with λmax 426 nm making the adult yellowfin tuna a photopic dichromat. The situation for larvae and early juveniles is different from that of the adults. The all single-cone retina of preflexion larvae shows a wide distribution in individual cone absorbances suggesting not only mixtures of the two adult cone pigments, but the presence of at least a third visual pigment with λmax greater than 560 nm. With growth, the variation in cone absorbances decreases with convergence to the adult condition coincident with cone twinning. The significance of λmax variability, multiple visual pigment expression and age-related differences are discussed in terms of the visual ecology of larval, juvenile and adult tunas.  相似文献   

11.
Spectrophotometric analysis affords the most convenient means for determining the proportion of methylene blue and trimethyl thionin (azure B) present in a mixture of these two dyes. The method proposed depends upon the determination of an “absorption ratio.” A suitable ratio for the purpose is that of the extinction coefficient at 640 mμ to that at 670 mμ. On account of the difference in absorption maxima of the two dyes, this ratio increases as the percentage of methylene blue decreases. The ratio value for eleven different mixtures is given and a graph is plotted from this data by means of which the proportions of the two dyes present in any mixture can be calculated from the absorption ratio determined as specified.  相似文献   

12.
Glass electrode measurements of the pH value of the sap of cells of Nitella show that azure B in the form of free base penetrates the vacuoles and raises the pH value of the sap to about the same degree as the free base of the dye added to the sap in vitro, but the dye salt dissolved in the sap does not alter the pH value of the sap. It is concluded that the dye penetrates the vacuoles chiefly in the form of free base and not as salt. The dye from methylene blue solution containing azure B free base as impurity penetrates and accumulates in the vacuole. This dye must be azure B in the form of free base, since it raises the pH value of the sap to about the same extent as the free base of azure B dissolved in the sap in vitro. The dye absorbed by the chloroform from methylene blue solution behaves like the dye penetrating the vacuole. These results confirm those of spectrophotometric analysis previously published. Crystal violet exists only in one form between pH 5 and pH 9.2, and does not alter the pH value of the sap at the concentrations used. It does not penetrate readily unless cells are injured. A theory of "multiple partition coefficients" is described which explains the mechanism of the behavior of living cells to these dyes. When the protoplasm is squeezed into the sap, the pH value of the mixture is higher than that of the pure sap. The behavior of such a mixture to the dye is very much like that of the sap except that with azure B and methylene blue the rise in the pH value of such a mixture is not so pronounced as with sap when the dye penetrates into the vacuoles. Spectrophotometric measurements show that the dye which penetrates from methylene blue solution has a primary absorption maximum at 653 to 655 mµ (i.e., is a mixture of azure B and methylene blue, with preponderance of azure B) whether we take the sap alone or the sap plus protoplasm. These results confirm those previously obtained with spectrophotometric measurements.  相似文献   

13.
Starting from ancient reports that rare samples of methylene blue were apparently sufficiently contaminated with azures to give red plasmodial and red purple nuclear chromatin in Chenzinsky type methylene blue eosin stains, it was decided to determine how little azure B would suffice for such staining in methylene blue eosin stains. The traditional 1902 Giemsa had an azure:methylene blue: eosin ratio of about 6:3:6.3:10; Lillie's 1943 formula had a 5:7:10 ratio. In the current series of tests 5:7:10 (I), 4:8:10 (II), 3:9:10 (III), 2:10:10 (IV), 1:11:10 (V), and 0:12:10 (VI) were used. Malaria and blood stains were better than the standard 5:7:10 (I) in III, IV and II in that order. Normal and leukemic human blood, mouse blood with Plasmodium berghei, and monkey blood with the CDC strain of Pl. falciparum were used as test materials. The staining mixtures were made from highly purified samples of azure B and methylene blue. Staining mixtures contained 12 ml 0.1% thiazin dye, 10 ml 0.1% eosin, 2 ml each of glycerol, methanol and 0.1 M phosphate buffer pH 6.5, 3 ml acetone as accelerator, and distilled water to make 40 ml; staining times of 10-30 min were used.  相似文献   

14.
A method is described for the purification of the dye azure B in quantities sufficient for biological staining experiments on a larger scale. The method is based on the use of column chromatography. Two columns are employed. In column A with silica gel as adsorbent the azure B fraction is isolated from a suitable substrate ('technical' azure B gained by a modification of Bernthsen's synthesis of methylene blue, or polychrome methylene blue) using an acetate-formate mixture as eluent. In column B, on an Amberlite polymeric adsorbent (XAD-2) the acetate-formate anions are exchanged in chloride. Regeneration of both columns is possible: KMnO4, Na2S2O4 and water are run through column A; 5% NaOH, methanol and water through column B. Purification of azure B on economic terms is thus attained. The opinion is expressed that this method is also applicable to the purification of other cationic dyes.  相似文献   

15.
Supravital staining by thiazins of segments of small intestine and mesentery of young dogs was studied with reference to specificity for nervous tissue. Attempts to secure a purer form of methylene blue by alumina adsorption and alcohol elution of the commercial, medicinal dye yielded a product which appeared to be structurally different from the original dye. The treated dye had absorption maxima from 620 to 655 mμ in contrast with 665 for the untreated. Small nerve bundles were stained by the treated dye after 2 to 4 hours of immersion, but staining was always incomplete. Staining by untreated methylene blue was compared with that by the leucobase, thionol, methylene green, toluidine blue, new methylene blue and the azures. It was concluded that the specificity for nerve fibers resides mainly in the =N(CH3)2Cl radical, although some specificity appears to be effected by the methyl groups on the trivalent nitrogen, since azure A (dimethyl) and azure C (mono-methyl) stained weakly, but thionin did not. Methylene green showed some specificity but stained weakly. The leucobase was less active than the reoxidized dye obtained from it.  相似文献   

16.
A method is described for the purification of the dye azure B in quantities sufficient for biological staining experiments on a larger scale. The method is based on the use of column chromatography. Two columns are employed. In column A with silica gel as adsorbent the azure B fraction is isolated from a suitable substrate ('technical' azure B gained by a modification of Bernthsen's synthesis of methylene blue, or plychrome methylene blue) using an acetate-formate mixture as eluent. In column B, on an Amberlite polyineric adsorbent (XAD-2) the acetate-formate anions are exchanged for chloride. Regeneration of both columns is possible: KMnO4, Na2S2O4 and water are run through column A, 5% NaOH, methanol and water through column B. Purification of azure B on economic terms is thus attained. The opinion is expressed that this method is also applicable to the purification of other cationic dyes.  相似文献   

17.
A simple and rapid method is described for staining semithin sections of material embedded in epoxy resin for observing tissues prior to transmission electron microscopy. The method is suitable for tissue fixed with a glutaraldehyde-formaldehyde mixture and postfixed in osmium tetroxide. No etching or oxidizing procedures are necessary. Sections 0.5-0.8 microm thick are dried onto a slide and stained with either 0.75% methylene blue and 0.25% azure B or 0.5% methylene blue and 0.5% azure II in 0.5% aqueous borax and heated over a flame for 8-10 sec. The slides are rinsed with water, then stained the same way with 0.1% basic fuchsine in 5% aqueous ethanol. Cytoplasm stains blue; nuclei darker blue; collagen, mucus and elastin pink to red; fat and intracellular lipid droplets gray-green.  相似文献   

18.
Aqueous solutions of a number of biological stains were completely decontaminated to the limit of detection using Amberlite resins. Amberlite XAD-16 was the most generally applicable resin but Amberlite XAD-2, Amberlite XAD-4, and Amberlite XAD-7 could be used to decontaminate some solutions. Solutions of acridine orange, alcian blue 8GX, alizarin red S, azure A, azure B, Congo red, cresyl violet acetate, crystal violet, eosin B, erythrosin B, ethidium bromide, Janus green B, methylene blue, neutral red, nigrosin, orcein, propidium iodide, rose Bengal, safranine O, toluidine blue O, and trypan blue could be completely decontaminated to the limit of detection and solutions of eosin Y and Giemsa stain were decontaminated to very low levels (less than 0.02 ppm) using Amberlite XAD-16. Reaction times varied from 10 min to 18 hr. Up to 500 ml of a 100 micrograms/ml solution could be decontaminated per gram of Amberlite XAD-16. Fourteen of the 23 stains tested were found to be mutagenic to Salmonella typhimurium. None of the completely decontaminated solutions were found to be mutagenic.  相似文献   

19.
The aim of the present study was to compare the staining pattern of the standard azure B-eosin Y stain with commercial May-Grünwald-Giemsa (MGG) stains on cytological specimens by means of high resolution image analysis. Several cytological specimens (blood smears, abdominal serous effusions, bronchial scrape material) were air dried, methanol fixed and stained with the standard azure B-eosin Y stain and with commercial May-Grünwald-Giemsa stains. Integrated optical density (IOD) and colour intensities of cell nuclei and cytoplasm were measured with the IBAS 2000 image analyser. Commercial MGG stains gave much higher coefficients of variation for all parameters than the standard stain. Reproducibility of cell nuclei segmentation versus cytoplasm was significantly better for the standard stain. Contamination of the standard stain with methylene blue partly copied the staining pattern of commercial stains. The standard azure B-eosin Y stain is recommended for high resolution image analysis (HRIA) of cytological samples.  相似文献   

20.
A method is described for the separation of azure A from commezcial samples of polychrome methylene blue. Up to 300 mg of the pure dye may be isolated in this way. The method is based on chromatography using columns 90 cm high, 7 cm in diameter, loaded with 3 g of polychrome methylene blue. The absorbent is silica gel, the eluent a mixture of acetic and formic acid.

Poor solubility of the dye acetate in water necessitates dissociation of the acetate by alkalinization and subsequent conversion of the dye to the chloride with diluted Ha. Demethylation that occasionally occurs during this procedure is negligible. Pure azure A does not spontaneously demethylate under ordinary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号