首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin.

Methodology/Principal Findings

L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV.

Conclusion/Significance

VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts.  相似文献   

2.
Infection with oncogenic human papillomaviruses (HPVs), typified by HPV type 16 (HPV16), is a necessary cause of cervical cancer. Prophylactic vaccination with HPV16 L1 virus-like particles (VLPs) provides immunity. HPV16 VLPs activate dendritic cells and a potent neutralizing immunoglobulin G (IgG) response, yet many cervical cancer patients fail to generate detectable VLP-specific IgG. Therefore, we examined the role of the innate recognition of HPV16 L1 in VLP-induced immune responses and its evasion during carcinogenesis. Nonconservative mutations within HPV16 L1 have been described in isolates from cervical cancer and its precursor, high-grade cervical intraepithelial neoplasia (CIN). We determined the effect of mutations in L1 upon in vitro self-assembly into VLPs and their influence upon the induction of innate and adaptive immune responses in mice. Several nonconservative mutations in HPV16 L1 isolated from high-grade CIN or cervical carcinoma prevent self-assembly of L1 VLPs. Intact VLPs, but not assembly-defective L1, activate dendritic cells to produce proinflammatory factors, such as alpha interferon, that play a critical role in inducing adaptive immunity. Indeed, effective induction of L1-specific IgG1 and IgG2a was dependent upon intact VLP structure. Dendritic cell activation and production of virus-specific neutralizing IgG by VLPs requires MyD88-dependent signaling, although the L1 structure that initiates MyD88-mediated signaling is distinct from the neutralizing epitopes. We conclude that innate recognition of the intact L1 VLP structure via MyD88 is critical in the induction of high-titer neutralizing IgG. Tumor progression is associated with genetic instability and L1 mutants. Selection for assembly-deficient L1 mutations suggests the evasion of MyD88-dependent immune control during cervical carcinogenesis.  相似文献   

3.
人乳头瘤病毒(human papillomavirus,HPV)58型是宫颈癌的主要诱因之一. HPV58在亚洲地区宫颈癌组织中的检出率仅次于HPV16/18. HPV58中和单克隆抗体可用于 HPV病毒样颗粒(virus-like particle,VLP)疫苗的研究,并为病毒感染入侵机制的 研究提供实验材料. 本研究采用HPV58 L1 VLP免疫BALB/c小鼠,取其脾细胞进行杂交瘤 细胞的制备,通过VLP-ELISA和假病毒中和实验筛选杂交瘤细胞株;经rProtein A纯化 阳性杂交瘤细胞培养上清获得单抗;采用ELISA测定型别特异性中和单抗的亲和力,采用相加实验及变性VLP-ELISA分析单抗识别表位的性质;选取高亲和力单抗建立定量分 析HPV58 L1 VLP的ELISA方法. 获得了2株HPV58特异性中和单抗XM-22和XM-23,亲和常数分别为2.7×107 mol-1·L和1.9×106 mol-1·L,二者识别表位可能不同. 同时获得2株具有交叉中和活性的单抗XM-21和XM-24,除可较高水平中和HPV58外,还可分别交叉 中和亲缘关系较远的HPV18和HPV6. 以XM-22建立的ELISA方法定量分析HPV58 L1 VLP的检测范围为0.05 μg/mL~0.40 μg/mL. 本研究建立的ELISA方法可用于HPV58 L1 VLP疫苗生产的质量控制研究,获得的4株具有不同特点的中和单抗可用于HPV58感染入侵机制 的研究.  相似文献   

4.
Certain human papillomaviruses (HPVs) cause most cervical cancer, which remains a significant source of morbidity and mortality among women worldwide. HPV recombinant virus-like particles (VLPs) are promising vaccine candidates for controlling anogenital HPV disease and are now being evaluated as a parenteral vaccine modality in human subjects. Vaccines formulated for injection generally are more costly, more difficult to administer, and less acceptable to recipients than are mucosally administered vaccines. Since oral delivery represents an attractive alternative to parenteral injection for large-scale human vaccination, the oral immunogenicity of HPV type 11 (HPV-11) VLPs in mice was previously investigated; it was found that a modest systemic neutralizing antibody response was induced (R. C. Rose, C. Lane, S. Wilson, J. A. Suzich, E. Rybicki, and A. L. Williamson, Vaccine 17:2129-2135, 1999). Here we examine whether VLPs of other genotypes may also be immunogenic when administered orally and whether mucosal adjuvants can be used to enhance VLP oral immunogenicity. We show that HPV-16 and HPV-18 VLPs are immunogenic when administered orally and that oral coadministration of these antigens with Escherichia coli heat-labile enterotoxin (LT) mutant R192G (LT R192G) or CpG DNA can significantly improve anti-VLP humoral responses in peripheral blood and in genital mucosal secretions. Our results also suggest that LT R192G may be superior to CpG DNA in this ability. These findings support the concept of oral immunization against anogenital HPV disease and suggest that clinical studies involving this approach may be warranted.  相似文献   

5.
高危型人乳头瘤病毒(human papillomavirus, HPV)慢性持续性感染是诱发宫颈癌的主要病因.体外表达的HPV主要衣壳蛋白(L1)可自组装成病毒样颗粒(virus-like particle, VLP),免疫后可诱导产生型别特异性中和抗体,有效保护机体免受同型病毒的感染,因此可望预防病毒感染及感染相关的宫颈癌等病变.HPV 58是诱发我国妇女宫颈癌的主要高危型病毒之一,目前尚无针对HPV 58的疫苗问世.本研究联合采用多种策略对HPV 58 L1野生型基因进行改造,获得HPV 58 L1改造基因,命名为HPV 58mL1,用杆状病毒 昆虫细胞表达系统进行HPV 58 mL1的表达,CsCl密度梯度离心法纯化获得HPV 58 mL1重组蛋白,电镜分析结果显示,重组蛋白形成直径约55 nm的VLP.皮下免疫新西兰兔和豚鼠,ELISA检测显示,免疫动物产生高滴度针对HPV 58 mL1 VLP的抗血清,免疫斑点印迹检测显示,抗血清是针对VLP表面表位的.本研究表达了均一性好的HPV 58 mL1 VLP,并获得两个种属的HPV 58 mL1 VLP抗血清,为进一步研究有效预防HPV 58感染的疫苗打下基础.  相似文献   

6.

Background

Virus-like Particles (VLPs) display can be used to increase the immunogenicity of heterologous antigens. Here, we report the use of a bacteriophage MS2-based VLP display platform to develop a monovalent vaccine targeting a broadly neutralizing epitope in the minor capsid protein human papillomavirus (HPV) that provides broad protection from diverse HPV types in a mouse pseudovirus infection model.

Methodology/Principal Findings

Peptides spanning a previously described cross-neutralizing epitope from HPV type 16 were genetically inserted at the N-terminus of MS2 bacteriophage coat protein. Three of the four recombinant L2-coat proteins assembled into VLPs. L2-VLPs elicited high-titer anti-L2 antibodies in mice, similar to recombinant VLPs that we had previously made in which the L2 peptide was displayed on a surface-exposed loop on VLPs of a related bacteriophage, PP7. Somewhat surprisingly, L2-MS2 VLPs elicited antibodies that were much more broadly cross-reactive with L2 peptides from diverse HPV isolates than L2-PP7 VLPs. Similarly, mice immunized with L2-MS2 VLPs were protected from genital and cutaneous infection by highly diverse HPV pseudovirus types.

Conclusion/Significance

We show that peptides can be displayed in a highly immunogenic fashion at the N-terminus of MS2 coat protein VLPs. A VLP-based vaccine targeting HPV L2 elicits broadly cross-reactive and cross-protective antibodies to heterologous HPV types. L2-VLPs could serve as the basis of a broadly protective second generation HPV vaccine.  相似文献   

7.
Human papillomaviruses (HPVs) are known etiologic agents of cervical cancer. Vaccines that contain virus-like particles (VLPs) made of L1 capsid protein from several high risk HPV types have proven to be effective against HPV infections. Raising high levels of neutralizing antibodies against each HPV type is believed to be the primary mechanism of protection, gained by vaccination. Antibodies elicited by a particular HPV type are highly specific to that particular HPV type and show little or no cross-reactivity between HPV types. With an intention to understand the interplay between the L1 structure of different HPV types and the type specificity of neutralizing antibodies, we have prepared the L1 pentamers of four different HPV types, HPV11, HPV16, HPV18, and HPV35. The pentamers only bind the type-specific neutralizing monoclonal antibodies (NmAbs) that are raised against the VLP of the corresponding HPV type, implying that the surface loop structures of the pentamers from each type are distinctive and functionally active as VLPs in terms of antibody binding. We have determined the crystal structures of all four L1 pentamers, and their comparisons revealed characteristic conformational differences of the surface loops that contain the known epitopes for the NmAbs. On the basis of these distinct surface loop structures, we have provided a molecular explanation for the type specificity of NmAbs against HPV infection.  相似文献   

8.
To express human papillomavirus (HPV) L 1 capsid protein in the recombinant strain of Shigella and study the potential of a live attenuated Shigella-based HPV prophylactic vaccine in preventing HPV infection, the icsA/virG fragment of Shigella-based prokaryotic expression plasmid pHS3199 was constructed. HPV type 16 L1 (HPV16L1) gene was inserted into plasmid pHS3199 to form the pHS3199-HPV16L1 construct, and pHS3199-HPV 16L1 was electroporated into a live attenuated Shigella strain sh42. Western blotting analysis showed that HPV 16L 1 could be expressed stably in the recombinant strain sh42-HPV 16L 1. Sereny test results were negative, which showed that the sh42-HPV16L1 lost virulence. However, the attenuated recombinant strain partially maintained the invasive property as indicated by the HeLa cell infection assay. Specific IgG, IgA antibody against HPV16L1 virus-like particles (VLPs) were detected in the sera, intestinal lavage and vaginal lavage from animals immunized by sh42-HPV 16L1. The number of antibodysecreting cells in the spleen and draining lymph nodes were increased significantly compared with the control group. Sera from immunized animals inhibited mufine hemagglutination induced by HPV 16L1 VLPs, which indicated that the candidate vaccine could stimulate an efficient immune response in guinea pig's mucosal sites. This may be an effective strategy for the development of an HPV prophylactic oral vaccine.  相似文献   

9.
为研究1型重组腺病毒伴随病毒(Adeno-associated virus type 1,AAV1)载体作为HPV16预防性疫苗的可行性,构建含密码子优化型HPV16L1基因(mod.HPV16L1)的1型重组AAV载体rAAV1-mod.HPV16L1,将纯化的rAAV1-mod.HPV16L1以肌注和滴鼻途径分别免疫C57BL/6小鼠,使用体外中和实验检测血清中的特异性中和抗体.结果显示,rAAV1-mod.HPV16L1单针肌注及滴鼻免疫均可诱导特异性血清中和抗体,但二组抗体动态变化趋势不同,肌注组血清中和抗体滴度显著高于滴鼻组.rAAV1-mod.HPV16L1单针肌注免疫可诱导强而持久的血清中和抗体,是理想的候选HPV16预防性疫苗.  相似文献   

10.
Since several years it has been accepted that persistent infection with certain (so called-high risk: HR) types of Human papillomaviruses (HPV) represents a strong risk factor for cervical cancer. The most frequent HR HPV types 16 and 18 account for about 70% of this tumour, which is the second most frequent malignancy in women worldwide. Several studies in animal papillomavirus models revealed that protection against infection is conferred by neutralizing antibodies directed against conformational epitopes of the major structural protein L1. Such antibodies can most efficiently be induced by immunization with virus-like particles (VLP) that assemble spontaneously following expression of L1 in recombinant vectors. Large-scale production of HPV 16 and 18 VLPs proved to be successful facilitating, a few years ago, first clinical trials on safety and immunogenicity. In the meantime more than 25,000 women have been included into several efficacy trials which demonstrated protection against persistent infection with HPV 16 and 18 and against the development of precursor lesions to cervical cancer. Although the ultimate proof of success, i.e. reduction of cancer incidence still requires the immunization of large populations and many years of follow-up, the existing data are so persuasive that the responsible agencies in several countries permitted the licensing of the first HPV vaccine in 2006. Several questions such as the duration of protection, the need development of for post-exposure vaccination strategies and availability of such vaccine in low-budget countries are open and will be discussed.  相似文献   

11.
The variable surface loops on human papillomavirus (HPV) virions required for type-specific neutralization by human sera remain poorly defined. To determine which loops are required for neutralization, a series of hybrid virus-like particles (VLPs) were used to adsorb neutralizing activity from HPV type 16 (HPV16)-reactive human sera before being tested in an HPV16 pseudovirion neutralization assay. The hybrid VLPs used were composed of L1 sequences of either HPV16 or HPV31, on which one or two regions were replaced with homologous sequences from the other type. The regions chosen for substitution were the five known loops that form surface epitopes recognized by monoclonal antibodies and two additional variable regions between residues 400 and 450. Pretreatment of human sera, previously found to react to HPV16 VLPs in enzyme-linked immunosorbent assays, with wild-type HPV16 VLPs and hybrid VLPs that retained the neutralizing epitopes reduced or eliminated the ability of sera to inhibit pseudovirus infection in vitro. Surprisingly, substitution of a single loop often ablated the ability of VLPs to adsorb neutralizing antibodies from human sera. However, for all sera tested, multiple surface loops were found to be important for neutralizing activity. Three regions, defined by loops DE, FG, and HI, were most frequently identified as being essential for binding by neutralizing antibodies. These observations are consistent with the existence of multiple neutralizing epitopes on the HPV virion surface.  相似文献   

12.
We report a system for generating infectious papillomaviruses in vitro that facilitates the analysis of papillomavirus assembly, infectivity, and serologic relatedness. Cultured hamster BPHE-1 cells harboring autonomously replicating bovine papillomavirus type 1 (BPV1) genomes were infected with recombinant Semliki Forest viruses that express the structural proteins of BPV1. When plated on C127 cells, extracts from cells expressing L1 and L2 together induced numerous transformed foci that could be specifically prevented by BPV neutralizing antibodies, demonstrating that BPV infection was responsible for the focal transformation. Extracts from BPHE-1 cells expressing L1 or L2 separately were not infectious. Although Semliki Forest virus-expressed L1 self-assembled into virus-like particles (VLPs), viral DNA was detected in particles only when L2 was coexpressed with L1, indicating that genome encapsidation requires L2. Expression of human papillomavirus type 16 (HPV16) L1 and L2 together in BPHE-1 cells also yielded infectious virus. These pseudotyped virions were neutralized by antiserum to HPV16 VLPs derived from European (114/K) or African (Z-1194) HPV16 variants but not by antisera to BPV VLPs, to a poorly assembling mutant HPV16 L1 protein, or to VLPs of closely related genital HPV types. Extracts from BPHE-1 cells coexpressing BPV L1 and HPV16 L2 or HPV16 L1 and BPV L2 were not infectious. We conclude that (i) mouse C127 cells express the cell surface receptor for HPV16 and are able to uncoat HPV16 capsids; (ii) if a papillomavirus DNA packaging signal exists, then it is conserved between the BPV and HPV16 genomes; (iii) functional L1-L2 interaction exhibits type specificity; and (iv) protection by HPV virus-like particle vaccines is likely to be type specific.  相似文献   

13.
Kim HJ  Lim SJ  Kwag HL  Kim HJ 《PloS one》2012,7(4):e35893
Cell growth conditions and purification methods are important in determining biopharmaceutical activity. However, in studies aimed at manufacturing virus-like particles (VLPs) for the purpose of creating a prophylactic vaccine and antigen for human papillomavirus (HPV), the effects of the presence of a resin-bound ligand during purification have never been investigated. In this study, we compared the structural integrity and immunogenicity of two kinds of VLPs derived from HPV type 16 (HPV16 VLPs): one VLP was purified by heparin chromatography (hHPV16 VLP) and the other by cation-exchange chromatography (cHPV16 VLP). The reactivity of anti-HPV16 neutralizing monoclonal antibodies (H16.V5 and H16.E70) towards hHPV16 VLP were significantly higher than the observed cHPV16 VLP reactivities, implying that hHPV16 VLP possesses a greater number of neutralizing epitopes and has a greater potential to elicit anti-HPV16 neutralizing antibodies. After the application of heparin chromatography, HPV16 VLP has a higher affinity for H16.V5 and H16.E70. This result indicates that heparin chromatography is valuable in selecting functional HPV16 VLPs. In regard to VLP immunogenicity, the anti-HPV16 L1 IgG and neutralizing antibody levels elicited by immunizations of mice with hHPV16 VLPs were higher than those elicited by cHPV16 VLP with and without adjuvant. Therefore, the ability of hHPV16 VLP to elicit humoral immune responses was superior to that of cHPV16 VLP. We conclude that the specific chromatographic technique employed for the purification of HPV16 VLPs is an important factor in determining the structural characteristics and immunogenicity of column-purified VLPs.  相似文献   

14.
Studies of virus neutralization by antibody are a prerequisite for development of a prophylactic vaccine strategy against human papillomaviruses (HPVs). Using HPV16 and -6 pseudovirions capable of inducing beta-galactosidase in infected monkey COS-1 cells, we examined the neutralizing activity of mouse monoclonal antibodies (MAbs) that recognize surface epitopes in HPV16 minor capsid protein L2. Two MAbs binding to a synthetic peptide with the HPV16 L2 sequence of amino acids (aa) 108 to 120 were found to inhibit pseudoinfections with HPV16 as well as HPV6. Antisera raised by immunizing BALB/c mice with the synthetic peptide had a cross-neutralizing activity similar to that of the MAb. The data indicate that HPV16 and -6 have a common cross-neutralization epitope (located within aa 108 to 120 of L2 in HPV16), suggesting that this epitope may be shared by other genital HPVs.  相似文献   

15.
Human papillomavirus-like particles (HPV VLPs) have shown considerable promise as a parenteral vaccine for the prevention of cervical cancer and its precursor lesions. Parenteral vaccines are expensive to produce and deliver, however, and therefore are not optimal for use in resource-poor settings, where most cervical HPV disease occurs. Transgenic plants expressing recombinant vaccine immunogens offer an attractive and potentially inexpensive alternative to vaccination by injection. For example, edible plants can be grown locally and can be distributed easily without special training or equipment. To assess the feasibility of an HPV VLP-based edible vaccine, in this study we synthesized a plant codon-optimized version of the HPV type 11 (HPV11) L1 major capsid protein coding sequence and introduced it into tobacco and potato. We show that full-length L1 protein is expressed and localized in plant cell nuclei and that expression of L1 in plants is enhanced by removal of the carboxy-terminal nuclear localization signal sequence. We also show that plant-expressed L1 self-assembles into VLPs with immunological properties comparable to those of native HPV virions. Importantly, ingestion of transgenic L1 potato was associated with activation of an anti-VLP immune response in mice that was qualitatively similar to that induced by VLP parenteral administration, and this response was enhanced significantly by subsequent oral boosting with purified insect cell-derived VLPs. Thus, papillomavirus L1 protein can be expressed in transgenic plants to form immunologically functional VLPs, and ingestion of such material can activate potentially protective humoral immune responses.  相似文献   

16.
周玉柏  周玲  吴小兵  曾毅 《病毒学报》2006,22(2):101-106
为研究重组腺病毒载体作为HPV16预防性疫苗的可行性,构建了含密码子优化型HPV 16 L1基因的重组腺病毒,并对优化基因在哺乳动物细胞中的表达进行研究。首先按照哺乳动物密码子偏好对野生型HPV16 L1基因进行改造并合成优化基因,命名为mod.HPV16L1。将mod.HPV16L1基因克隆到穿梭质粒PDC316上,与骨架质粒共转染293细胞,在细胞内包装重组腺病毒rAd-mod.HPV16L1。用免疫印迹法检测病毒感染的293T细胞中HPV16L1蛋白的表达。通过Optiprep密度梯度超速离心法纯化HPV16 L1病毒样颗粒(VLPs)。用磷钨酸负染,在电子显微镜下观察HPV16 L1蛋白自我装配形成的VLPs。结果显示,重组腺病毒载体可介导mod.HPV16 L1基因在哺乳动物细胞内的高效表达,L1蛋白可自我装配形成VLPs。  相似文献   

17.
To enhance the immunogenicity of human papillomavirus 16 (HPV 16) virus-like particles (VLPs), the modified adjuvant, mLTK63, was fused to the C-terminus of HPV 16 L2 protein. Coexpression of HPV 16 L1 and L2-mLTK63 proteins in insect cells led to the efficient assembly of HPV 16 L1/L2-mLTK63 chimeric VLPs (cVLPs), which combined the antigen and adjuvant as a unit. Compared with HPV 16 L1/L2 VLPs, the HPV 16 L1/L2-mLTK63 cVLPs had similar structural biology characteristics and binding activities with the cell surface receptors and HPV 16-specific neutralizing monoclonal antibodies. Intramuscular immunization of BALB/c mice with the HPV 16 L1/L2-mLTK63 cVLPs could induce higher titers of HPV 16-specific long-lasting neutralizing serum antibodies and stronger splenocyte proliferation, Th1- and Th2-type cytokines and CD4(+) Th responses than HPV 16 L1/L2 VLPs. The results suggested that it is possible to enhance the immunogenicity of HPV VLP vaccines via a strategy of fusing effective adjuvant protein into cVLPs.  相似文献   

18.
Human papillomavirus (HPV) are well known to be associated with the development of cervical cancer. HPV16 and HPV 18 are known as high-risk types and reported to be predominantly associated with cervical cancer. The prevalence and genetic diversity of HPV have been well documented globally but, in the Kingdom of Saudi Arabia, data on HPV genetic diversity are lacking. In this study, we have analyzed the genetic diversity of both HPV16 and HPV18 based on their L1 gene sequence because L1 gene is a major capsid protein gene and has been utilized to develop a prophylactic vaccine. In January 2011–2012, a total of forty samples from cervical specimens of women in Saudi Arabia were collected. The association of HPV16, HPV18 was detected by polymerase chain reaction, sequenced and submitted to GenBank. The sequences identity matrix and the phylogenetic relationship were analyzed with selected HPVs. The highest sequence identity (99.5%) for HPV16 and (99.3%) for HPV was observed with selected HPVs. The phylogenetic analysis results showed that HPVs from Saudi Arabia formed a closed cluster with African, Asian, East Asian as well as American HPVs distributed into multiple linages from various geographical locations. The results provided the valuable information about genetic diversity, but there is an urgent need to generate full genome sequence information which will provide a clearer picture of the genetic diversity and evolution of HPVs in Saudi Arabia. In conclusion, the generated data will be highly beneficial for developing molecular diagnostic tools, analyzing and correlating the epidemiological data to determine the risk of cervical cancer and finally to develop a vaccine for Saudi Arabian population.  相似文献   

19.
There is increasing demand for virus-like particles (VLPs) as a platform for prophylactic vaccine production. However, little attention has been paid to how downstream processing affects the structure and immunogenicity of the VLPs. In this study, we compared three methods of purifying human papillomavirus type 16 (HPV16) VLPs, each including the same cation-exchange chromatography (CEC) step. Method T-1 uses both ammonium sulfate precipitation (ASP) and a step to remove precipitated contaminating proteins (SRPC) prior to CEC, while T-2 uses only the SRPC step prior to CEC and T-3 includes neither step. We compared the structural integrity and immunogenicity of the HPV16 VLPs resulting from these three methods. All three preparations were highly pure. However, the final yields of the VLPs obtained with T-2 were 1.5 and 2 fold higher than with T-1 and T-3, respectively. With respect to structural integrity, T-1 and T-2 HPV16 VLPs had smaller hydrodynamic diameters and higher reactivity towards monoclonal anti-HPV16 neutralizing antibodies than T-3 VLPs, indicating higher potentials of T-1 and T-2 VLPs for eliciting anti-HPV16 neutralizing antibodies. Moreover, it was confirmed that the T-1 and T-2 HPV16 VLPs elicit anti-HPV16 neutralizing antibodies more efficiently than T-3 HPV16 VLPs do in mice immunizations: the abilities for eliciting neutralizing antibodies were in the order T-2 VLP > T-1 VLP > T-3 VLP. We conclude that the process design for purifying HPV VLPs is a critical determinant of the quality of the final product.  相似文献   

20.
Genital human papillomavirus (HPV) infection is the most common sexually transmitted infection, and virtually all cases of cervical cancer are attributable to infection by a subset of HPVs (reviewed in ref. 1). Despite the high incidence of HPV infection and the recent development of a prophylactic vaccine that confers protection against some HPV types, many features of HPV infection are poorly understood. It remains worthwhile to consider other interventions against genital HPVs, particularly those that target infections not prevented by the current vaccine. However, productive papillomavirus infection is species- and tissue-restricted, and traditional models use animal papillomaviruses that infect the skin or oral mucosa. Here we report the development of a mouse model of cervicovaginal infection with HPV16 that recapitulates the establishment phase of papillomavirus infection. Transduction of a reporter gene by an HPV16 pseudovirus was characterized by histology and quantified by whole-organ, multispectral imaging. Disruption of the integrity of the stratified or columnar genital epithelium was required for infection, which occurred after deposition of the virus on the basement membrane underlying basal keratinocytes. A widely used vaginal spermicide, nonoxynol-9 (N-9), greatly increased susceptibility to infection. In contrast, carrageenan, a polysaccharide present in some vaginal lubricants, prevented infection even in the presence of N-9, suggesting that carrageenan might serve as an effective topical HPV microbicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号