首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance of 14 clinical isolates of C. trachomatis to fluoroquinolones, i.e. of ciprofloxacin, pefloxaxin and ofloxacin, was assayed. Three isolates with a high resistance degree to all 3 drugs (MIC equal or above 64 microg/ml) were detected. MIC was found to be equal to or below 4 microg/ml for 3 isolates. The remaining isolates had an intermediate resistance level. The nucleotide sequence was established for the Quinolone-Resistance Determining Region (QRDR) genes coding the DNA-gyrase subunit A (gyrA) and DNA-topoisomerase IV subunit C (parC) as well as for the 3'-region of ygeD coding, presumably, the efflux protein. In none of the isolates, the gyrA and gyrC QRDR differed from the corresponding regions in the published C. trachomatis genome sequence. Several silent mutations and mutations resulting in amino acid substitutions were observed in the ygeD 3' region of 2 isolates resistant to high FQ concentrations and in 1 isolate with the intermediate resistance level.  相似文献   

2.
The effect of cocultivation of eukaryotic HeLa cells and Mycoplasma hominis mycoplasma on the resistance of the latter to fluoroquinolones (ciprofloxacin) was examined. It was shown that cocultivation of the M. homonis and HeLa cells during 24 h with subsequent addition of ciprofloxacin resulted in an increase of the mircoplasma resistance to this antimicrobial agent. In the M. hominis cells cultivated in the presence of HeLa cells and the increasing concentration of ciprofloxacin mutations in the parC gene were observed only at low concentrations of the antimicrobial agent, while mutations in the gyrA gene were never detected. A gradual elevation of ciprofloxacin concentration up to 10 micrograms/ml resulted in the reversion of the parC mutations in mycoplasmas. Mycoplasma cells resistant to high flouroquinolone concentrations and isolated after cocultivation with the HeLa cells were characterized by the wild-type genotype in respect of the gyrA and parC genes. It was shown for the first time that infection of HeLa cells resulted in the appearance of genome rearrangements in M. hominis cells.  相似文献   

3.
Nucleotide sequence of Acholeplasma laidlawii genome site PG-8B (1000 n.p.), containing topoisomerase IV subunit genes (parE and parC), has been determined. Sequenced genome site contains a gene fragment coding for the C-terminal region of ParE and gene fragment coding for N-terminal region of ParC. Topoisomerase IV subunite genes in A. laidlawii genome are situated near each other and overlapping by 4 nucleotides. Selection in liquid nutrient medium with ascending antibiotic concentrations resulted in derivation of A. laidlawii PG-8B cells resistant to ciprofloxacin, a fluoroquinolone. The resistant clones contain a mutation in the parC QRDR region determining fluoroquinolone resistance: Ser(91) (corresponding to Ser(80) in Escherichia coli ParC) replacement) for Leu.  相似文献   

4.
The full length genes gyrB (2,415 bp), parC (2,277 bp), and parE (1,896 bp) in Edwardsiella tarda were cloned by PCR with degenerate primers based on the sequence of the respective quinolone resistance-determining region (QRDR), followed by elongation of 5' and 3' ends using cassette ligation-mediated PCR (CLMP). Analysis of the cloned genes revealed open reading frames (ORFs) encoding proteins of 804 (GyrB), 758 (ParC), and 631 (ParE) amino acids with conserved gyrase/topoisomerase features and motifs important for enzymatic function. The ORFs were preceded by putative promoters, ribosome binding sites, and inverted repeats with the potential to form cruciform structures for binding of DNA-binding proteins. When comparing the deduced amino acid sequences of E. tarda GyrB, ParC, and ParE with those of the corresponding proteins in other bacteria, they were found to be most closely related to Escherichia coli GyrB (87.6% identity), Klebsiella pneumoniae ParC (78.8% identity) and Salmonella typhimurium ParE (89.5% identity), respectively. The two topoisomerase genes, parC and parE, were found to be contiguous on the E. tarda chromosome. All 18 quinoloneresistant isolates obtained from Korea thus far did not contain subunit alternations apart from a substitution in GyrA (Ser83→Arg). However, an alteration in the QRDR of ParC (Ser84→Ile) following an amino acid substitution in GyrA (Asp87→Gly) was detected in E. tarda mutants selected in vitro at 8 microng/ml ciprofloxacin (CIP). A mutant with a GyrB (Ser464→Leu) and GyrA (Asp87→Gly) substitution did not show a significant increase in the minimum inhibitory concentration (MIC) of CIP. None of the in vitro mutants exhibited mutations in parE. Thus, gyrA and parC should be considered to be the primary and secondary targets, respectively, of quinolones in E. tarda.  相似文献   

5.
The subunits of topoisomerase IV (topo IV), the ParC and ParE proteins in Escherichia coli, were purified to near homogeneity from the respective overproducers. They revealed type II topoisomerase activity only when they were combined with each other. In the presence of Mg2+ and ATP, topo IV was capable of relaxing a negatively or positively supercoiled plasmid DNA or converting the knotted P4 phage DNA, whether nicked or ligated, to a simple ring. However, supercoiling activity was not detected. The topoisomerase activity was not detectable when the purified ParC and ParE proteins were combined with the purified GyrB and GyrA proteins, respectively. This is consistent with the result that neither a parC nor a parE mutation was compensated by transformation with a plasmid carrying either the gyrA or the gyrB gene. Simultaneous introduction of both the gyrA and gyrB plasmids corrected the phenotypic defect of parC and parE mutants. The results suggest that DNA gyrase can substitute for topo IV at least in some part of the function for chromosome partitioning. Antisera were prepared against the purified ParC, ParE, GyrA, and GyrB proteins and used to investigate cellular localization of these gene products. ParC protein was found to be specifically associated with inner membranes only in the presence of DNA. This result suggests that one of the functions of topo IV might be to anchor chromosomes on membranes as previously proposed for eukaryotic topoisomerase II.  相似文献   

6.
In this study, we investigated the presence of plasmid-mediated quinolone resistance (PMQR) genes among 101 ciprofloxacin-resistant urinary Escherichia coli isolates and searched for mutations in the quinolone-resistance-determining regions (QRDRs) of the DNA gyrase and topoisomerase IV genes in PMQR-carrying isolates. Eight isolates harboured the qnr and aac(6')-Ib-cr genes (3 qnrS1, 1 qnrB19 and 4 aac(6')-Ib-cr). A mutational analysis of the QRDRs in qnr and aac(6')-Ib-cr-positive isolates revealed mutations in gyrA, parC and parE that might be associated with high levels of resistance to quinolones. No mutation was detected in gyrB. Rare gyrA, parC and parE mutations were detected outside of the QRDRs. This is the first report of qnrB19, qnrS1 and aac(6')-Ib-cr -carrying E. coli isolates in Brazil.  相似文献   

7.
New topoisomerase essential for chromosome segregation in E. coli   总被引:50,自引:0,他引:50  
J Kato  Y Nishimura  R Imamura  H Niki  S Hiraga  H Suzuki 《Cell》1990,63(2):393-404
The nucleotide sequence of the parC gene essential for chromosome partition in E. coli was determined. The deduced amino acid sequence was homologous to that of the A subunit of gyrase. We found another new gene coding for about 70 kd protein. The gene was sequenced, and the deduced amino acid sequence revealed that the gene product was homologous to the gyrase B subunit. Mutants of this gene were isolated and showed the typical Par phenotype at nonpermissive temperature; thus the gene was named parE. Enhanced relaxation activity of supercoiled plasmid molecules was detected in the combined crude cell lysates prepared from the ParC and ParE overproducers. A topA mutation defective in topoisomerase I could be compensated by increasing both the parC and the parE gene dosage. It is suggested that the parC and parE genes code for the subunits of a new topoisomerase, named topo IV.  相似文献   

8.
Bacillus subtilis Bs gyrA and gyrB genes specifying the DNA gyrase subunits, and parC and parE genes specifying the DNA topoisomerase IV subunits, have been separately cloned and expressed in Escherichia coli as hexahistidine (his6)-tagged recombinant proteins. Purification of the gyrA and gyrB subunits together resulted in predominantly two bands at molecular weights of 94 and 73kDa; purification of the parC and parE subunits together resulted in predominantly two bands at molecular weights of 93 and 75kDa, as predicted by their respective sequences. The ability of the subunits to complement their partner was tested in an ATP-dependent decatenation/supercoiling assay system. The results demonstrated that the DNA gyrase and the topoisomerase IV subunits produce the expected supercoiled DNA and relaxed DNA products, respectively. Additionally, inhibition of these two enzymes by fluoroquinolones has been shown to be comparable to those of the DNA gyrases and topoisomerases of other bacterial strains. In sum, the biological and enzymatic properties of these products are consistent with their authenticity as DNA gyrase and DNA topoisomerase IV enzymes from B. subtilis.  相似文献   

9.
Real-time quantification of Pseudomonas aeruginosa was performed in various wastewater systems including clinical, municipal wastewaters and inflow from a wastewater treatment plant. The highest concentrations of P. aeruginosa-specific targets were detected in clinical wastewaters. Limitations of the detection system resulting from inhibition or cross-reaction were identified. Ciprofloxacin-resistant P. aeruginosa strains were isolated after specific enrichment from clinical and municipal wastewaters. In some cases they were also cultivated from effluent of a wastewater treatment plant, and from its downstream river water. A total of 119 isolates were phenotypically characterized as ciprofloxacin-resistant via antibiogram testing. Subsequently, the fluoroquinolone-resistance-mediating mutations in the genes gyrA codon positions 83 and 87, gyrB codon position 466 and parC codon positions 87 and 91 were determined by mini-sequencing. Ciprofloxacin resistance was mainly associated with mutations in gyrA codon position 83 and parC mutation in codon positions 87 or 91 of the bacterial gyrase and topoisomerase II genes. All ciprofloxacin-resistant P. aeruginosa strains were compared with genotypes from clinical data of fluoroquinolone-resistant P. aeruginosa infections. The results were in agreement with data from clinical analyses, with the exception that no gyrA 87 and no gyrB mutations were found in ciprofloxacin-resistant P. aeruginosa wastewater isolates.  相似文献   

10.
目的了解3种氟喹诺酮类(FQS)体外诱导肺炎克雷伯菌(Klebsiella pneumoniae,Kpn)耐药性的差异,研究肺炎克雷伯菌DNA旋转酶A亚单位(GyrA)和拓扑异构酶ⅣC亚基(ParC)的变异与其耐喹诺酮类药物的关系。方法采用环丙沙星(CW)、左氧氟沙星(LEX)和加替沙星(GAT)对从临床分离8株Kpn进行体外分步诱导,采用琼脂平板二倍稀释法测定CIP、LVF及GAT对Kpn诱导前、后的最低抑菌浓度(MIC),并对诱导成功的17株Kpn的GyrA的基因(gyrA)和ParC的基因(parC)进行PCR扩增,选取其中8株KpnDNA测序并进行序列分析比较。结果8株耐FQS菌株都存在GyrA变异,同FQS耐药性相关的变异有Ser83(TCC)→Phe(TTC)、Ile(ATC)和Tyr(TAC),Asp87(GAC)→Ala(GCC)、ma(GCC)和Glu(GAA),5株Kpn同时存在ParC的变异:丝氨酸Ser80(AGC)→Ile(ATC)。结论本研究体外实验证实了Kpn可在长期低剂量的接触抗菌药物后形成耐药菌株。在高度耐FQS的Kpn中同时存在GyrA和ParC变异。  相似文献   

11.
The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The Ser83 to Thr substitution in Methylovorus sp. strain SS1, and the Ser83 to Leu and Asp87 to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones.  相似文献   

12.
Quinolone resistance in Salmonella spp. is usually attributed to both active efflux and mutations leading to modification of the target enzymes DNA gyrase and topoisomerase IV. Here, we investigated the presence of mutations in the efflux regulatory genes of fluoroquinolone- and multidrug-resistant mutants of Salmonella enterica serovar Typhimurium (S. Typhimurium) selected in vitro with enrofloxacin that both carried a mutation in the target gene gyrA and overproduced the AcrAB efflux pump. No mutations were detected in the global regulatory loci marRAB and soxRS for the four strains studied. A mutation in acrR, the local repressor of acrAB, was found for two ciprofloxacin-resistant selected-mutants, leading to duplication of amino acids Ile75 and Glu76. Complementation experiments with wild-type acrR showed that the mutation identified in acrR partially contributed to the increase in resistance levels to several unrelated antibiotics. The acrR mutation also contributed to acrAB overexpression as shown by RT-PCR. Thus, this study underlines the role of an acrR mutation, in addition to the mutation in gyrA, in the fluoroquinolone and multidrug resistance phenotype of S. Typhimurium mutants, through overexpression of acrAB.  相似文献   

13.
Fluoroquinolones such as ciprofloxacin and ofloxacin are potent antimicrobial agents that antagonize the A subunit of DNA gyrase. We selected and mapped a novel fluoroquinolone resistance gene on the Staphylococcus aureus chromosome. Resistant mutants were selected with ciprofloxacin or ofloxacin and were uniformly localized to the A fragment of chromosomal DNA digested with SmaI and arrayed by pulsed-field gel electrophoresis. Several mutants (cfxB, ofxC) were genetically mapped between the thr and trp loci in the A fragment. A majority of A fragment fluoroquinolone resistance mutations were associated with reduced susceptibility to novobiocin, an antagonist of the B subunit of DNA gyrase. Two genes previously associated with fluoroquinolone resistance, the gyrA gene of DNA gyrase and the norA gene (associated with decreased drug accumulation), were localized to the G and D fragments, respectively. Thus, the fluoroquinolone resistance mutations in the A fragment are distinct from previously identified fluoroquinolone resistance mutations in gyrA and norA. Whether mutations in the A fragment after a second topoisomerase or another gene controlling supercoiling or affect drug permeation is unknown.  相似文献   

14.
Escherichia coli deletion mutants lacking DNA topoisomerase I have been identified previously and shown to grow at a normal rate. We show that such strains grow normally only because of spontaneously arising mutations that compensate for the topoisomerase I defect. Several of these compensatory mutations have been found to map at or near the genes encoding DNA gyrase, gyrA and gyrB. DNA gyrase assays of crude extracts show that strains carrying the mutations have lower gyrase activity. Thus the mutations are in the gyrase structural genes or in nearby regulatory sequences. These results, in conjunction with DNA supercoiling measurements of others, indicate that in vivo DNA superhelicity is a result of a balance between topoisomerase I and gyrase activities. An excess of negative supercoils due to an absence of topoisomerase I is deleterious to the cell, but a moderate gyrase deficiency is not harmful.  相似文献   

15.
Topoisomerase IV, a C(2)E(2) tetramer, is involved in the topological changes of DNA during replication. This enzyme is the target of antibacterial compounds, such as the coumarins, which target the ATP binding site in the ParE subunit, and the quinolones, which bind, outside the active site, to the quinolone resistance-determining region (QRDR). After site-directed and random mutagenesis, we found some mutations in the ATP binding site of ParE near the dimeric interface and outside the QRDR that conferred quinolone resistance to Streptococcus pneumoniae, a bacterial pathogen. Modeling of the N-terminal, 43-kDa ParE domain of S. pneumoniae revealed that the most frequent mutations affected conserved residues, among them His43 and His103, which are involved in the hydrogen bond network supporting ATP hydrolysis, and Met31, at the dimeric interface. All mutants showed a particular phenotype of resistance to fluoroquinolones and an increase in susceptibility to novobiocin. All mutations in ParE resulted in resistance only when associated with a mutation in the QRDR of the GyrA subunit. Our models of the closed and open conformations of the active site indicate that quinolones preferentially target topoisomerase IV of S. pneumoniae in its ATP-bound closed conformation.  相似文献   

16.
Identification of the tip-encoded receptor in bacterial sensing.   总被引:5,自引:2,他引:3       下载免费PDF全文
Relaxation of titratable supercoils in bacterial nucleoids was measured following treatment of topA mutants with coumermycin or oxolinic acid, inhibitors of DNA gyrase. Relaxation occurred after treatment of the mutants with either inhibitor. We detected no significant difference in relaxation between topA- and topA+ strains treated with coumermycin. This finding, together with previous observations, supports the idea that relaxation caused by coumermycin probably arises from the relaxing activity of gyrase itself. The source of DNA relaxation caused by oxolinic acid was not identified. Nucleoid supercoiling can be increased by adding oxolinic acid to a strain that carries three topoisomerase mutations: delta topA, gyrB225, and gyrA (Nalr) (S. H. Manes, G. J. Pruss, and K. Drlica, J. Bacteriol. 155:420-423, 1983). We found that this increase in supercoiling requires partial sensitivity to the drug and at the delta topA and gyrA mutations. Full resistance to oxolinic acid in the presence of the delta topA, gyrB225, and gyrA mutations was conferred by an additional mutation that maps at or near gyrB.  相似文献   

17.
Food-borne infections due to Salmonella spp. seldom require antimicrobial therapy, but this is compulsory in systemic salmonellosis. Salmonella resistance to a large panel of antibiotics has been described worldwide. Since the introduction of nalidixic acid in therapy, Salmonella spp. have steadily developed resistance, especially over the last three decades. The source of quinolone resistance is thought to be the selective pressure determined by the use of quinolones in both human and veterinary practices. Resistance acquisition of Salmonella strains is a stepwise process. Several mechanisms are described, which can lead to the development of quinolone resistance. The main mechanism is considered to be linked with mutations in the quinolone-resistance determining region (QRDR) of the target genes (gyrA and gyrB encoding DNA gyrase, and parC and parE encoding topoisomerase IV). This first step in mutational resistance usually determines a rise in the nalidixic acid minimal inhibitory concentration (MIC). The most common amino acid substitutions in the GyrA subunit, resulting in varied degrees of quinolone resistance, occur at codons Ser83 and Asp87. Higher levels of resistance may occur by further mutational steps, with amino acid changes in the same or a different target enzyme. Other mechanisms are as well involved, like increased efflux or plasmid-mediated resistance. Acknowledgement of the epidemiology and the onset mechanisms of quinolone resistance in Salmonella spp. is compulsory, and surveillance for resistant bacteria among human, animal and food sources remains critical.  相似文献   

18.
Quinolone-resistant Salmonella enterica usually contain a mutation in gyrA within the region encoding the quinolone resistance determining region of the A subunit of DNA gyrase. These mutations confer substitutions analogous to Escherichia coli Ser83-->Phe and Asp87-->Gly or Tyr, or a novel mutation resulting in Ala119-->Glu or Val. Mutations in gyrB are rare, and no mutations in parC or parE have been described. Quinolone-resistant Salmonella can also be cross-resistant to other agents including chloramphenicol and tetracycline. Increased efflux has been demonstrated and for some strains this has been associated with increased expression of acrB. Mutation in soxR has also been shown for one isolate. Detection of low level resistance (minimum inhibitory concentrations <0.5 microg ml(-1)) to fluoroquinolones is proving an increasing problem in the treatment of invasive Salmonella infections.  相似文献   

19.
Fifteen strains of M. hominis isolated from patients with urogenital inflammations were analyzed. Variations in the quinolone resistance-determining regions (QRDR) have been found in fluoroquinolone-resistant M. hominis clinical isolates in comparison with the reference PG21 strain. In one isolate, parC had Asn substitute at position 91.  相似文献   

20.
In Escherichia coli, the miniF plasmid CcdB protein is responsible for cell death when its action is not prevented by polypeptide CcdA. We report the isolation, localization, sequencing and properties of a bacterial mutant resistant to the cytotoxic activity of the CcdB protein. This mutation is located in the gene encoding the A subunit of topoisomerase II and produces an Arg462----Cys substitution in the amino acid sequence of the GyrA polypeptide. Hence, the mutation was called gyrA462. We show that in the wild-type strain, the CcdB protein promotes plasmid linearization; in the gyrA462 strain, this double-stranded DNA cleavage is suppressed. This indicates that the CcdB protein is responsible for gyrase-mediated double-stranded DNA breakage. CcdB, in the absence of CcdA, induces the SOS pathway. SOS induction is a biological response to DNA-damaging agents. We show that the gyrA462 mutation suppresses this SOS activation, indicating that SOS induction is a consequence of DNA damages promoted by the CcdB protein on gyrase-DNA complexes. In addition, we observe that the CcdBS sensitive phenotype dominates over the resistant phenotype. This is better explained by the conversion, in gyrA+/gyrA462 merodiploid strains, of the wild-type gyrase into a DNA-damaging agent. These results strongly suggest that the CcdB protein, like quinolone antibiotics and a variety of antitumoral drugs, is a DNA topoisomerase II poison. This is the first proteinic poison-antipoison mechanism that has been found to act via the DNA topoisomerase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号