首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrinsic disorder in transcription factors   总被引:8,自引:0,他引:8  
  相似文献   

2.
Although the members of the largest subfamily of the EF-hand proteins, S100 proteins, are evolutionarily young, their functional diversity is extremely broad, partly due to their ability to adapt to various targets. This feature is a hallmark of intrinsically disordered proteins (IDPs), but none of the S100 proteins are recognized as IDPs. S100 are predicted to be enriched in intrinsic disorder, with 62% of them being predicted to be disordered by at least one of the predictors: 31% are recognized as 'molten globules' and 15% are shown to be in extended disordered form. The disorder level of predicted disordered S100 regions is conserved compared to that of more structured regions. The central disordered stretch corresponds to the major part of pseudo EF-hand loop, helix II, hinge region, and an initial part of helix III. It contains about half of known sites of enzymatic post-translational modifications (PTMs), confirming that this region can be flexible in vivo. Most of the internal residues missing in tertiary structures belong to the hinge. Both hinge and pseudo EF-hand loop correspond to the local maxima of the PONDR? VSL2 score and are shown to be evolutionary hotspots, leading to gain of new functional properties. The action of PTMs is shown to be destabilizing, in contrast with the effect of metal-binding or S100 dimerization. Formation of the S100 heterodimers relies on the interplay between the structural rigidity of one of the S100 monomers and the flexibility of another monomer. The ordered regions dominate in the S100 homodimerization sites. Target-binding sites generally consist of distant regions, drastically differing in their disorder level. The disordered region comprising most of the hinge and the N-terminal half of helix III is virtually not involved into dimerization, being intended solely for target recognition. The structural flexibility of this region is essential for recognition of diverse target proteins. At least 86% of multiple interactions of S100 proteins with binding partners are attributed to the S100 proteins predicted to be disordered. Overall, the intrinsic disorder is inherent to many S100 proteins and is vital for activity and functional diversity of the family.  相似文献   

3.
Intrinsic disorder in cell-signaling and cancer-associated proteins   总被引:3,自引:0,他引:3  
The number of intrinsically disordered proteins known to be involved in cell-signaling and regulation is growing rapidly. To test for a generalized involvement of intrinsic disorder in signaling and cancer, we applied a neural network predictor of natural disordered regions (PONDR VL-XT) to four protein datasets: human cancer-associated proteins (HCAP), signaling proteins (AfCS), eukaryotic proteins from SWISS-PROT (EU_SW) and non-homologous protein segments with well-defined (ordered) 3D structure (O_PDB_S25). PONDR VL-XT predicts >or=30 consecutive disordered residues for 79(+/-5)%, 66(+/-6)%, 47(+/-4)% and 13(+/-4)% of the proteins from HCAP, AfCS, EU_SW, and O_PDB_S25, respectively, indicating significantly more intrinsic disorder in cancer-associated and signaling proteins as compared to the two control sets. The disorder analysis was extended to 11 additional functionally diverse categories of human proteins from SWISS-PROT. The proteins involved in metabolism, biosynthesis, and degradation together with kinases, inhibitors, transport, G-protein coupled receptors, and membrane proteins are predicted to have at least twofold less disorder than regulatory, cancer-associated and cytoskeletal proteins. In contrast to 44.5% of the proteins from representative non-membrane categories, just 17.3% of the cancer-associated proteins had sequence alignments with structures in the Protein Data Bank covering at least 75% of their lengths. This relative lack of structural information correlated with the greater amount of predicted disorder in the HCAP dataset. A comparison of disorder predictions with the experimental structural data for a subset of the HCAP proteins indicated good agreement between prediction and observation. Our data suggest that intrinsically unstructured proteins play key roles in cell-signaling, regulation and cancer, where coupled folding and binding is a common mechanism.  相似文献   

4.
5.
Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical approach, outlines the major findings, and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder.  相似文献   

6.
Protein flexibility and intrinsic disorder   总被引:6,自引:0,他引:6  
Comparisons were made among four categories of protein flexibility: (1) low-B-factor ordered regions, (2) high-B-factor ordered regions, (3) short disordered regions, and (4) long disordered regions. Amino acid compositions of the four categories were found to be significantly different from each other, with high-B-factor ordered and short disordered regions being the most similar pair. The high-B-factor (flexible) ordered regions are characterized by a higher average flexibility index, higher average hydrophilicity, higher average absolute net charge, and higher total charge than disordered regions. The low-B-factor regions are significantly enriched in hydrophobic residues and depleted in the total number of charged residues compared to the other three categories. We examined the predictability of the high-B-factor regions and developed a predictor that discriminates between regions of low and high B-factors. This predictor achieved an accuracy of 70% and a correlation of 0.43 with experimental data, outperforming the 64% accuracy and 0.32 correlation of predictors based solely on flexibility indices. To further clarify the differences between short disordered regions and ordered regions, a predictor of short disordered regions was developed. Its relatively high accuracy of 81% indicates considerable differences between ordered and disordered regions. The distinctive amino acid biases of high-B-factor ordered regions, short disordered regions, and long disordered regions indicate that the sequence determinants for these flexibility categories differ from one another, whereas the significantly-greater-than-chance predictability of these categories from sequence suggest that flexible ordered regions, short disorder, and long disorder are, to a significant degree, encoded at the primary structure level.  相似文献   

7.
Protein existing as an ensemble of structures, called intrinsically disordered, has been shown to be responsible for a wide variety of biological functions and to be common in nature. Here we focus on improving sequence-based predictions of long (>30 amino acid residues) regions lacking specific 3-D structure by means of four new neural-network-based Predictors Of Natural Disordered Regions (PONDRs): VL3, VL3H, VL3P, and VL3E. PONDR VL3 used several features from a previously introduced PONDR VL2, but benefitted from optimized predictor models and a slightly larger (152 vs. 145) set of disordered proteins that were cleaned of mislabeling errors found in the smaller set. PONDR VL3H utilized homologues of the disordered proteins in the training stage, while PONDR VL3P used attributes derived from sequence profiles obtained by PSI-BLAST searches. The measure of accuracy was the average between accuracies on disordered and ordered protein regions. By this measure, the 30-fold cross-validation accuracies of VL3, VL3H, and VL3P were, respectively, 83.6 +/- 1.4%, 85.3 +/- 1.4%, and 85.2 +/- 1.5%. By combining VL3H and VL3P, the resulting PONDR VL3E achieved an accuracy of 86.7 +/- 1.4%. This is a significant improvement over our previous PONDRs VLXT (71.6 +/- 1.3%) and VL2 (80.9 +/- 1.4%). The new disorder predictors with the corresponding datasets are freely accessible through the web server at http://www.ist.temple.edu/disprot.  相似文献   

8.
Cheng Y  LeGall T  Oldfield CJ  Dunker AK  Uversky VN 《Biochemistry》2006,45(35):10448-10460
Evidence that many protein regions and even entire proteins lacking stable tertiary and/or secondary structure in solution (i.e., intrinsically disordered proteins) might be involved in protein-protein interactions, regulation, recognition, and signal transduction is rapidly accumulating. These signaling proteins play a crucial role in the development of several pathological conditions, including cancer. To test a hypothesis that intrinsic disorder is also abundant in cardiovascular disease (CVD), a data set of 487 CVD-related proteins was extracted from SWISS-PROT. CVD-related proteins are depleted in major order-promoting residues (Trp, Phe, Tyr, Ile, and Val) and enriched in some disorder-promoting residues (Arg, Gln, Ser, Pro, and Glu). The application of a neural network predictor of natural disordered regions (PONDR VL-XT) together with cumulative distribution function (CDF) analysis, charge-hydropathy plot (CH plot) analysis, and alpha-helical molecular recognition feature (alpha-MoRF) indicator revealed that CVD-related proteins are enriched in intrinsic disorder. In fact, the percentage of proteins with 30 or more consecutive residues predicted by PONDR VL-XT to be disordered was 57 +/- 4% for CVD-associated proteins. This value is close that described earlier for signaling proteins (66 +/- 6%) and is significantly larger than the content of intrinsic disorder in eukaryotic proteins from SWISS-PROT (47 +/- 4%) and in nonhomologous protein segments with a well-defined three-dimensional structure (13 +/- 4%). Furthermore, CDF and CH-plot analyses revealed that 120 and 36 CVD-related proteins, respectively, are wholly disordered. This high level of intrinsic disorder could be important for the function of CVD-related proteins and for the control and regulation of processes associated with cardiovascular disease. In agreement with this hypothesis, 198 alpha-MoRFs were predicted in 101 proteins from the CVD data set. A comparison of disorder predictions with the experimental structural and functional data for a subset of the CVD-associated proteins indicated good agreement between predictions and observations. Thus, our data suggest that intrinsically disordered proteins might play key roles in cardiovascular disease.  相似文献   

9.
Lavery DN  McEwan IJ 《Biochemistry》2008,47(11):3360-3369
The androgen receptor (AR) mediates the action of the steroid hormones testosterone and dihydrotestosterone. The protein contains two globular alpha-helical domains responsible for binding hormone and DNA. In contrast, the N-terminal domain is less well structurally defined and contains the main determinants for receptor-dependent transactivation, termed AF1. Previously, we have shown this region has the propensity to form alpha-helix structure. Significantly, the binding of specific protein targets or a natural osmolyte resulted in a more protease resistant conformation for the AF1 domain, consistent with an increase in conformational stability. Computational and experimental analyses were used to investigate the conformational properties of the native AF1 domain. This region of the receptor is predicted to contain significant regions of natural disordered structure, when analyzed by amino acid composition, PONDR (Predictor of Natural Disordered Regions), RONN (Regional Order Neural Network), and GlobPlot, but is grouped with ordered proteins on a charge-hydropathy plot. The binding of a hydrophobic fluorescence probe, 8-anilinonaphthalene-1-sulfonic acid (ANS), together with size-exclusion chromatography suggests that native AR-AF1 exists in a collapsed disordered conformation, distinct from extended disordered (random coil) and a stable globular fold. This state has also been described as premolten or molten globule-like. These findings are discussed in terms of the functional importance of the intrinsic plasticity of the AF1 domain.  相似文献   

10.
The dominant view in protein science is that a three-dimensional (3-D) structure is a prerequisite for protein function. In contrast to this dominant view, there are many counterexample proteins that fail to fold into a 3-D structure, or that have local regions that fail to fold, and yet carry out function. Protein without fixed 3-D structure is called intrinsically disordered. Motivated by anecdotal accounts of higher rates of sequence evolution in disordered protein than in ordered protein we are exploring the molecular evolution of disordered proteins. To test whether disordered protein evolves more rapidly than ordered protein, pairwise genetic distances were compared between the ordered and the disordered regions of 26 protein families having at least one member with a structurally characterized region of disorder of 30 or more consecutive residues. For five families, there were no significant differences in pairwise genetic distances between ordered and disordered sequences. The disordered region evolved significantly more rapidly than the ordered region for 19 of the 26 families. The functions of these disordered regions are diverse, including binding sites for protein, DNA, or RNA and also including flexible linkers. The functions of some of these regions are unknown. The disordered regions evolved significantly more slowly than the ordered regions for the two remaining families. The functions of these more slowly evolving disordered regions include sites for DNA binding. More work is needed to understand the underlying causes of the variability in the evolutionary rates of intrinsically ordered and disordered protein.  相似文献   

11.
Regions of conserved disorder prediction (CDP) were found in protein domains from all available InterPro member databases, although with varying frequency. These CDP regions were found in proteins from all kingdoms of life, including viruses. However, eukaryotes had 1 order of magnitude more proteins containing long disordered regions than did archaea and bacteria. Sequence conservation in CDP regions varied, but was on average slightly lower than in regions of conserved order. In some cases, disordered regions evolve faster than ordered regions, in others they evolve slower, and in the rest they evolve at roughly the same rate. A variety of functions were found to be associated with domains containing conserved disorder. The most common were DNA/RNA binding, and protein binding. Many ribosomal proteins also were found to contain conserved disordered regions. Other functions identified included membrane translocation and amino acid storage for germination. Due to limitations of current knowledge as well as the methodology used for this work, it was not determined whether these functions were directly associated with the predicted disordered region. However, the functions associated with conserved disorder in this work are in agreement with the functions found in other studies to correlate to disordered regions. We have established that intrinsic disorder may be more common in bacterial and archaeal proteins than previously thought, but this disorder is likely to be used for different purposes than in eukaryotic proteins, as well as occurring in shorter stretches of protein. Regions of predicted disorder were found to be conserved within a large number of protein families and domains. Although many think of such conserved domains as being ordered, in fact a significant number of them contain regions of disorder that are likely to be crucial to their functions.  相似文献   

12.
The DNA-repair protein XPA is required to recognize a wide variety of bulky lesions during nucleotide excision repair. Independent NMR solution structures of a human XPA fragment comprising approximately 40% of the full-length protein, the minimal DNA-binding domain, revealed that one-third of this molecule was disordered. To better characterize structural features of full-length XPA, we performed time-resolved trypsin proteolysis on active recombinant Xenopus XPA (xXPA). The resulting proteolytic fragments were analyzed by electrospray ionization interface coupled to a Fourier transform ion cyclotron resonance mass spectrometry and SDS-PAGE. The molecular weight of the full-length xXPA determined by mass spectrometry (30922.02 daltons) was consistent with that calculated from the sequence (30922.45 daltons). Moreover, the mass spectrometric data allowed the assignment of multiple xXPA fragments not resolvable by SDS-PAGE. The neural network program Predictor of Natural Disordered Regions (PONDR) applied to xXPA predicted extended disordered N- and C-terminal regions with an ordered internal core. This prediction agreed with our partial proteolysis results, thereby indicating that disorder in XPA shares sequence features with other well-characterized intrinsically unstructured proteins. Trypsin cleavages at 30 of the possible 48 sites were detected and no cleavage was observed in an internal region (Q85-I179) despite 14 possible cut sites. For the full-length xXPA, there was strong agreement among PONDR, partial proteolysis data, and the NMR structure for the corresponding XPA fragment.  相似文献   

13.
Intrinsic disorder in the Protein Data Bank   总被引:2,自引:0,他引:2  
The Protein Data Bank (PDB) is the preeminent source of protein structural information. PDB contains over 32,500 experimentally determined 3-D structures solved using X-ray crystallography or nuclear magnetic resonance spectroscopy. Intrinsically disordered regions fail to form a fixed 3-D structure under physiological conditions. In this study, we compare the amino-acid sequences of proteins whose structures are determined by X-ray crystallography with the corresponding sequences from the Swiss-Prot database. The analyzed dataset includes 16,370 structures, which represent 18,101 PDB chains and 5,434 different proteins from 910 different organisms (2,793 eukaryotic, 2,109 bacterial, 288 viral, and 244 archaeal). In this dataset, on average, each Swiss-Prot protein is represented by 7 PDB chains with 76% of the crystallized regions being represented by more than one structure. Intriguingly, the complete sequences of only approximately 7% of proteins are observed in the corresponding PDB structures, and only approximately 25% of the total dataset have >95% of their lengths observed in the corresponding PDB structures. This suggests that the vast majority of PDB proteins is shorter than their corresponding Swiss-Prot sequences and/or contain numerous residues, which are not observed in maps of electron density. To determine the prevalence of disordered regions in PDB, the residues in the Swiss-Prot sequences were grouped into four general categories, "Observed" (which correspond to structured regions), "Not observed" (regions with missing electron density, potentially disordered), "Uncharacterized," and "Ambiguous," depending on their appearance in the corresponding PDB entries. This non-redundant set of residues can be viewed as a 'fragment' or empirical domain database that contains a set of experimentally determined structured regions or domains and a set of experimentally verified disordered regions or domains. We studied the propensities and properties of residues in these four categories and analyzed their relations to the predictions of disorder using several algorithms. "Non-observed," "Ambiguous," and "Uncharacterized" regions were shown to possess the amino acid compositional biases typical of intrinsically disordered proteins. The application of four different disorder predictors (PONDR(R) VL-XT, VL3-BA, VSL1P, and IUPred) revealed that the vast majority of residues in the "Observed" dataset are ordered, and that the "Not observed" regions are mostly disordered. The "Uncharacterized" regions possess some tendency toward order, whereas the predictions for the short "Ambiguous" regions are really ambiguous. Long "Ambiguous" regions (>70 amino acid residues) are mostly predicted to be ordered, suggesting that they are likely to be "wobbly" domains. Overall, we showed that completely ordered proteins are not highly abundant in PDB and many PDB sequences have disordered regions. In fact, in the analyzed dataset approximately 10% of the PDB proteins contain regions of consecutive missing or ambiguous residues longer than 30 amino-acids and approximately 40% of the proteins possess short regions (> or =10 and < 30 amino-acid long) of missing and ambiguous residues.  相似文献   

14.
Proteins participate in complex sets of interactions that represent the mechanistic foundation for much of the physiology and function of the cell. These protein-protein interactions are organized into exquisitely complex networks. The architecture of protein-protein interaction networks was recently proposed to be scale-free, with most of the proteins having only one or two connections but with relatively fewer 'hubs' possessing tens, hundreds or more links. The high level of hub connectivity must somehow be reflected in protein structure. What structural quality of hub proteins enables them to interact with large numbers of diverse targets? One possibility would be to employ binding regions that have the ability to bind multiple, structurally diverse partners. This trait can be imparted by the incorporation of intrinsic disorder in one or both partners. To illustrate the value of such contributions, this review examines the roles of intrinsic disorder in protein network architecture. We show that there are three general ways that intrinsic disorder can contribute: First, intrinsic disorder can serve as the structural basis for hub protein promiscuity; secondly, intrinsically disordered proteins can bind to structured hub proteins; and thirdly, intrinsic disorder can provide flexible linkers between functional domains with the linkers enabling mechanisms that facilitate binding diversity. An important research direction will be to determine what fraction of protein-protein interaction in regulatory networks relies on intrinsic disorder.  相似文献   

15.
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under physiological conditions. Intrinsic disorder is a common phenomenon, particularly in multicellular eukaryotes, and is responsible for important protein functions including regulation and signaling. Many disease-related proteins are likely to be intrinsically disordered or to have disordered regions. In this paper, a new predictor model based on the Bayesian classification methodology is introduced to predict for a given protein or protein region if it is intrinsically disordered or ordered using only its primary sequence. The method allows to incorporate length-dependent amino acid compositional differences of disordered regions by including separate statistical representations for short, middle and long disordered regions. The predictor was trained on the constructed data set of protein regions with known structural properties. In a Jack-knife test, the predictor achieved the sensitivity of 89.2% for disordered and 81.4% for ordered regions. Our method outperformed several reported predictors when evaluated on the previously published data set of Prilusky et al. [2005. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21 (16), 3435-3438]. Further strength of our approach is the ease of implementation.  相似文献   

16.
Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.  相似文献   

17.
Intrinsically disordered proteins and intrinsically disordered protein regions are highly abundant in nature. However, the quantitative and qualitative measures of protein intrinsic disorder in species with known genomes are still not available. Furthermore, although the correlation between high fraction of disordered residues and advanced species has been reported, the details of this correlation and the connection between the disorder content and proteome complexity have not been reported as of yet. To fill this gap, we analysed entire proteomes of 3484 species from three domains of life (archaea, bacteria and eukaryotes) and from viruses. Our analysis revealed that the evolution process is characterized by distinctive patterns of changes in the protein intrinsic disorder content. We are showing here that viruses are characterized by the widest spread of the proteome disorder content (the percentage of disordered residues ranges from 7.3% in human coronavirus NL63 to 77.3% in Avian carcinoma virus). For several organisms, a clear correlation is seen between their disorder contents and habitats. In multicellular eukaryotes, there is a weak correlation between the complexity of an organism (evaluated as a number of different cell types) and its overall disorder content. For both the prokaryotes and eukaryotes, the disorder content is generally independent of the proteome size. However, disorder shows a sharp increase associated with the transition from prokaryotic to eukaryotic cells. This suggests that the increased disorder content in eukaryotic proteomes might be used by nature to deal with the increased cell complexity due to the appearance of the various cellular compartments.  相似文献   

18.
Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed.  相似文献   

19.
Disordered regions are segments of a protein that do not fold completely and thus remain flexible. These regions have key physiological roles, particularly in phospho-proteins, which are enriched in disorder-promoting residues surrounding their phosphorylation sites. 14-3-3 proteins are ordered hubs that interact with multiple and diverse intrinsically disordered phosphorylated targets. This provides 14-3-3 with the ability to participate in and to regulate multiple signalling networks. Here, I review the effect of structural disorder on the mechanism involved in 14-3-3 protein-protein interactions and how 14-3-3 impacts cell biology through disordered ligands. How 14-3-3 proteins constitute an advantageous system to identify novel classes of biological tools is discussed with a special emphasis on a particular-and innovative-use of small molecules to stabilize 14-3-3 protein complexes, useful to study gene expression, cancer signalling and neurodegenerative diseases.  相似文献   

20.
N-terminal domain of HIV-1 p24 capsid protein is a globular fold composed of seven helices and two β-strands with a flexible structure including the α4–5 loop and both N- and C-terminal ends. However, the protein shows a high tendency (48%) for an intrinsically disordered structure based on the PONDR VL-XT prediction from the primary sequence. To assess the possibility of marginally stabilized structure under physiological conditions, the N-terminal domain of p24 was destabilized by the addition of an artificial flexible tag to either N- or C-terminal ends, and it was analyzed using T1, T2, hetero-nuclear NOE, and amide-proton exchange experiments. When the C-terminal tag (12 residues) was attached, the regions of the α3–4 loop and helix 6 as well as the α4–5 loop attained the flexible structures. Furthermore, in the protein containing the N-terminal tag (27 residues), helix 4 in addition to the above-mentioned area including α3–4 and α4–5 loops as well as helix 6 exhibited highly disordered structures. Thus, the long-range effects of the existence of tag sequence was observed in the stepwise manner of the appearance of disordered structures (step 1: α4–5 loop, step 2: α3–4 loop and helix 6, and step 3: helix 4). Furthermore, the disordered regions in tagged proteins were consistent with the PONDR VL-XT disordered prediction. The dynamic structure located in the middle part (α3–4 loop to helix 6) of the protein shown in this study may be related to the assembly of the viral particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号