首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A previously described Mendelian mutant of Chlamydomonas reinhardi, ac i72, exhibiting altered ribulosebisphosphate carboxylase activity and unable to grow on minimal medium is examined for changes in ribulosebisphosphate oxygenase activity. The ribulosebisphosphate oxygenase activity of the enzyme purified from both wild type and ac i72 is compared over a pH range from 7.0 to 9.5. Both enzymes exhibit maximum activity at pH 9.0. However, the ac i72 enzyme is twice as active as the wild type enzyme at a physiological pH of 7.0. The studies in vivo of the products of CO2 fixation of ac i72 and wild type cells in the presence of high and low O2 concentration shows that due to a lower level of carboxylation, the ac i72 cells fix CO2 at half the rate of wild type cells. In ac i72, 24% of the photosynthetically fixed 14C is channelled into the water-soluble fraction as opposed to 6% in wild type. Thin-layer chromatography of the water-soluble fraction showed extensive accumulation of components of the glycolate pathway in ac i72 as compared to wild type. This indicates that the oxygenase activity of the enzyme prevails in ac i72 in vivo. Since a high concentration of glycolate is toxic to cells of C. reinhardi, the high oxygenase activity of ac i72 provides an explanation for the inability of ac i72 to grow phototrophically even though its rate of CO2 fixation is half that of wild type. This toxicity to glycolate is overcome by growth under amber illumination or low O2 concentration.  相似文献   

2.
Crystalline ribulose-1,5-bisphosphate carboxylase (3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39) isolated from tobacco (Nicotiana tabacum L.) leaf homogenates is irreversibly inactivated by incubation with potassium cyanate at pH 7.4. The rate of inactivation is pseudo first-order and linearly dependent on reagent concentration. In the presence of ribulosebisphosphate or high levels of CO2 and Mg2+ the rate constant for inactivation is reduced, suggesting that chemical modification occurs in the active site region of the enzyme. In contrast, neither the effector NADPH nor the activator Mg2+ alone significantly affect the rate of inactivation by cyanate; however, NADPH markedly enhances the protective effect of CO2 and Mg2+. Incubation of the carboxylase with potassium [14C] cyanate in the absence or presence of ribulosebisphosphate revealed that the substrate specifically reduces cyanate incorporation into the large catalytic subunits of the enzyme. Analysis of acid hydrolysates of the radioactive carboxylase indicated that the reagent carbamylates both NH2-terminal groups and lysyl residues in the large and small subunits. Comparison of the substrate-protected enzyme with the inactivated carboxylase revealed that ribulosebisphosphate preferentially reduces lysyl modification within the large subunit. The data here presented indicate that inactivation of ribulosebisphosphate carboxylase by cyanate or its reactive tautomer, isocyanic acid, results from the modification of lysyl residues within the catalytic subunit, presumably at the activator and substrate CO2 binding sites on the enzyme.  相似文献   

3.
The facultatively chemolithoautotrophic hydrogen-oxidizing bacteria Alcaligenes eutrophus and Alcaligenes hydrogenophilus partially derepressed the formation of phosphoribulokinase and ribulosebisphosphate carboxylase during heterotrophic growth on fructose or gluconate. We examined whether the indigenous magaplasmids in these bacteria that encode the ability to oxidize hydrogen affected this derepression. The results suggest an involvement of the plasmids in the derepression for the following reasons: (i) wild-type strains, except A. eutrophus TF93, exhibited the derepressible phenotype; (ii) plasmid-cured mutants formed the enzymes with formate as autotrophic growth substrate but did not derepress their formation during heterotrophic growth; (iii) the phenotype of the wild type was restored by transfer of the plasmids into plasmid-cured mutants. Plasmid pHG2 from strain TF93 differed from the other wild-type plasmids by conferring a non-derepressible phenotype onto the harboring strain. Mutants of A. eutrophus H16 carrying deletions in plasmid pHG1 showed a similar phenotype as that of the plasmid-cured mutants. We concluded that the plasmids from the various strains studied encode a regulatory ability to derepress phosphoribulokinase and ribulosebisphosphate carboxylase under heterotrophic growth conditions.Abbreviations PRK phosphoribulokinase - RuBPC ribulosebisphosphate carboxylase - Hox ability to oxidize hydrogen - Cfx ability to fix carbon dioxide autotrophically Dedicated to Prof. Dr. H. G. Schlegel on the occasion of his 60th birthday  相似文献   

4.
Serial culture of Rhodospirillum rubrum with 2% CO2 in H2 as the exclusive carbon source resulted in a rather large fraction of the soluble protein (greater than 40%) being comprised of ribulosebisphosphate carboxylase (about sixfold higher than the highest value previously reported). Isolation of the enzyme from these cells revealed that it has physical and kinetic properties similar to those previously described for the enzyme derived from cells grown on butyrate. Notably, the small subunit (which is a constituent of the carboxylase from eucaryotes and most procaryotes) was absent in the enzyme from autotrophically grown R. rubrum. Edman degradation of the purified enzyme revealed that the NH2 terminus is free (in contrast to the catalytic subunit of the carboxylase from eucaryotes) and that the NH2-terminal sequence is Met-Asp-Gln-Ser-Ser-Arg-Tyr-Val-Asn-Leu-Ala-Leu-Lys-Glu-Glu-Asp-Leu-Ile-Ala-Gly-Gly-Glx-His-Val-Leu-. Crystals of the enzyme were readily obtained by dialysis against distilled water.  相似文献   

5.
Substitutions for active-site lysyl residues at positions 166 and 329 in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been shown to abolish catalytic activity. Treatment of the Cys-166 and Cys-329 mutant proteins with 2-bromoethylamine partially restores enzyme activity, presumably as a consequence of selective aminoethylation of the thiol group unique to each protein. Amino acid analyses, slow inactivation of the wild-type carboxylase by bromoethylamine, and the failure of bromoethylamine to restore activity to the corresponding glycyl mutant proteins support this interpretation. The observed facile, selective aminoethylations may reflect an active site microenvironment not dissimilar to that of the native enzyme. Catalytic constants of these novel carboxylases, which contain a sulfur atom in place of a specific lysyl gamma-methylene group, are significantly lower than that of the wild-type enzyme. Furthermore, the aminoethylated mutant proteins form isolable complexes with a transition state analogue, but with compromised stabilities. These detrimental effects by such a modest structural change underscore the stringent requirement for lysyl side chains at positions 166 and 329. In contrast, the aminoethylated mutant proteins exhibit carboxylase/oxygenase activity ratios and Km values that are unperturbed relative to those for the native enzyme.  相似文献   

6.
7.
Upon illumination with blue light (350–550 nm) of suspension cultured cells (Nicotiana tabacum var. Samsun) the transition of leucoplasts to functional chloroplasts is induced. During the subsequent greening period chlorophylls as well as membrane and enzyme proteins are synthesized. Thus the amount of ribulosebisphosphate carboxylase (EC. 4.1.1.39) being small in leucoplasts increases dramatically due to de novo synthesis. This change is also reflected in the level of translatable messenger RNA specific for the small subunit of ribulosebisphosphate carboxylase which accumulates only in blue-irradiated cells; its in vitro translation product isolated by immunoprecipitation corresponds mainly to the precursor protein (Mr 20 000) of the small subunit. In contrast, red light (600–700 nm) does not induce synthesis of ribulosebisphosphate carboxylase. According to these findings it is proposed that blue light exerts its influence on ribulosebisphosphate carboxylase in cultured tobacco cells at a level below translation.  相似文献   

8.
Affinity labeling and comparative sequence analyses have placed Lys-166 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at the active site. The unusual nucleophilicity and acidity of the epsilon-amino group of Lys 166 (pKa = 7.9) suggest its involvement in catalysis, perhaps as the base that enolizes ribulosebisphosphate (Hartman, F.C., Milanez, S., and Lee, E.H. (1985) J. Biol. Chem. 260, 13968-13975). In attempts to clarify the role of Lys-166 of the carboxylase, we have used site-directed mutagenesis to replace this lysyl residue with glycine, alanine, serine, glutamine, arginine, cysteine, or histidine. All seven of these mutant proteins, purified by immunoaffinity chromatography, are severely deficient in carboxylase activity; the serine mutant, which is the most active, has a kcat only 0.2% that of the wild-type enzyme. Although low, the carboxylase activity displayed by some of the mutant proteins proves that Lys-166 is not required for substrate binding and argues that the detrimental effects brought about by amino acid substitutions at position 166 do not reflect gross conformational changes. As demonstrated by their ability to tightly bind a transition-state analogue (2-carboxyarabinitol 1,5-bisphosphate) in the presence of CO2 and Mg2+, some of the mutant proteins undergo the carbamylation reaction that is required for activation of the wild-type enzyme. Since Lys-166 is required neither for activation (i.e. carbamylation by CO2) nor for substrate binding, it must be essential to catalysis. When viewed within the context of previous related studies, the results of site-directed mutagenesis are entirely consistent with Lys-166 functioning as the base that initiates catalysis by abstracting the C-3 proton from ribulosebisphosphate. An alternative possibility that Lys-166 acts to stabilize a transition state in the reaction pathway cannot be rigorously excluded.  相似文献   

9.
The epsilon-amino group of Lys-166 of Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase was postulated as the essential base which initiates catalysis by abstracting the proton at C-3 of ribulose 1,5-bisphosphate (Hartman, F. C., Soper, T. S., Niyogi, S. K., Mural, R. J., Foote, R. S., Mitra, S., Lee, E. H., Machanoff, R., and Larimer, F. W. (1987) J. Biol. Chem. 262, 3496-3501). To scrutinize this possibility, the site-directed Gly-166 mutant, totally devoid of ribulosebisphosphate carboxylase activity, was examined for its ability to catalyze each of three partial reactions. When carbamylated at Lys-191 (i.e. activated with CO2 and Mg2+), wild-type enzyme catalyzed the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate, the six-carbon reaction intermediate of the carboxylase reaction (Pierce, J., Andrews, T. J., and Lorimer, G. H. (1986a) J. Biol. Chem. 261, 10248-10256). Likewise, when carbamylated at Lys-191, the Gly-166 mutant also catalyzed the hydrolysis of this reaction intermediate. The carbamylated wild type catalyzed the enolization of ribulose 1,5-bisphosphate as indicated by the transfer of 3H radioactivity from [3-3H]ribulose, 1,5-bisphosphate to the medium. However, even when carbamylated at Lys-191, the mutant protein did not catalyze the enolization of ribulose 1,5-bisphosphate. Additionally, unlike the decarbamylated wild-type enzyme, which catalyzed the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate in the absence of Mg2+, the mutant protein was inactive in this partial reaction. These properties exclude the epsilon-amino group of Lys-166 as an obligatory participant in the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate. In contrast, these properties are consistent with the epsilon-amino group of Lys-166 functioning as an acid-base catalyst in the enolization of ribulose 1,5-bisphosphate (when the enzyme is carbamylated) and in the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate (when the enzyme is decarbamylated). Alternatively, Lys-166 may stabilize the transition states of these two partial reactions.  相似文献   

10.
The carboxylterminal octapeptide of ribulosebisphosphate carboxylase from Rhodospirillum rubrum, which lacks small subunits, shows homology to a highly conserved region near the amino terminus of the small subunits of hexadecameric ribulosebisphosphate carboxylases, which are composed of large and small subunits. Truncations of the R. rubrum enzyme, which partially or completely deleted the region of homology, demonstrated that the region is not an important determinant of the catalytic efficiency of the enzyme. A further truncation, which replaced the carboxylterminal 19 amino acid residues with a single terminal leucyl residue, yielded a Rubisco whose substrate-saturated catalytic rate resembled that of the wild-type enzyme but which had weaker affinities for ribulose-P2 and CO2.  相似文献   

11.
A mutant Escherichia coli (Ppcc-) which was unable to grow on glucose as a sole carbon source was isolated. This mutant had very low levels of phosphoenolpyruvate carboxylase activity (approximately 5% of the wild type). Goat immunoglobulin G prepared against wild-type phosphoenolypyruvate carboxylase cross-reacted with the Ppcc- enzyme. The amount of enzyme protein in the mutant cells was similar to that found in wild-type cells, but it had greatly diminished specific activity. The catalytically less active mutant enzyme retained the ability to interact with fructose 1,6-bisphosphate, but did not exhibit stabilization of the tetrameric form by aspartate. The pI of the mutant protein was lower (4.9) than that of the wild-type protein (5.1). After electrophoresis and immunoblotting of the partially purified protein, several immunostaining bands were seen in addition to the main enzyme band. A novel method for showing that these bands represented proteolytic fragments of phosphoenolpyruvate carboxylase was developed.  相似文献   

12.
Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified from chemolithotrophically grown Rhizobium japonicum SR and ribulose-5-phosphate kinase activity has also been detected in extracts of such cells. Electrophoretically homogeneous ribulosebisphosphate carboxylase/oxygenase purified in the presence of PMSF showed two types of large subunits of 55 000 and 53 000 daltons and small subunits of 14 200 daltons. The heterogeneity of large subunits was not observed when the enzyme was prepared in the presence of PMSF and DIFP. Ribulose-1,5-bisphosphate carboxylase from R. japonicum was inhibited by antibodies to this enzyme and a single precipitin band from the antibody-enzyme interaction was observed on double diffusion plates. Antibodies to R. japonicum enzyme did not cross-react on immunodiffusion plates with the ribulosebisphosphate carboxylase/oxygenases from wheat, spinach, soybean and tobacco.  相似文献   

13.
Chromosomal mutants of Alcaligenes eutrophus unable to grow with molecular hydrogen as the energy source also failed to grow with nitrate as the terminal electron acceptor or as a nitrogen source. The mutants (Hno) (i) formed neither soluble nor particulate hydrogenase antigens, (ii) expressed only about 50% the wild type level of ribulosebisphosphate carboxylase activity, and (iii) transported nickel, an essential constituent of active hydrogenase, at a significantly lower rate than wild type cells. Moreover, the mutants grew very slowly with urea as nitrogen source and did not express urease. Growth on formamide was also affected and formamidase activity was induced to only a very low level. Growth of the Hno mutants on succinate, glutamate, fumarate, and malate was significantly slower than wild type, and a reduced rate of succinate incorporation into the mutant cells was demonstrated. The highly pleiotropic phenotype of Hno mutants is indicative of a chromosomal gene with a considerable physiological importance. It affected the expression of both chromosomal and megaplasmid encoded systems of energy, carbon, and nitrogen metabolism. Thus, the hno mutation restricts the metabolic versatility but does not affect the basic metabolic functions of the organism.  相似文献   

14.
A previous study from our laboratory suggested that 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate is an affinity label for spinach ribulosebisphosphate carboxylase. To identify the essential residues that react with the reagent we have isolated and characterized the labeled peptides that are present in tryptic digests of inactivated enzyme but lacking in digests of the substrate-protected enzyme. Peptides representing two sites of modification have been obtained from the inactivated carboxylase. Both sites of reaction have been identified as lysyl residues based on the conversion of the derivatives to free lysine by oxidation with sodium metaperiodate. Sodium dodecyl sulfate-gel electrophoretic experiments show that both essential lysyl residues are contained within the large subunit of ribulosebisphosphate carboxylase. In addition to lysyl residues, sulfhydryl groups of the carboxylase are also modified, but their modification seems to play little role in the inactivation process. The carboxylase modified in the presence of substrate contains sulfhydryl derivatives but is essentially lacking in lysyl derivatives. By comparing the profiles from ion exchange chromatography of labeled peptides in digests of inactivated and substrate-protected enzyme, we conclude that the same sulfhydryl groups are modified in the absence and presence of substrate.  相似文献   

15.
The decrease in extractable activity of ribuloscbisphosphate carboxylase (EC 4.1.1.39), ATP sulfurylase (EC 2.7.7.4) and adenosine 5'-phosphosulfate sulfotransferase and the content in chlorophyll and protein was compared in leaves of cloned beech trees ( Fagus sylvatica L.) during autumnal senescence. Leaves excised at the same time but containing different amounts of chlorophyll gave extracts with correspondingly varying amounts of ribulosebisphosphate carboxylase activity. Leaves which had almost completely lost this enzyme activity contained still appreciable ATP sulfurylase and adenosine 5'-phosphosulfate sulfotransferase activity and soluble protein. For all components determined, there was a period lasting until mid or end of October during which there was no or only a small decrease. They were then all lost rapidly from the leaves. The specific activity of ribulosebisphosphate carboxylase decreased during this phase of rapid loss, whereas it remained essentially constant for ATP sulfurylase and adenosine 5'-phosphosulfate sulfotransferase. During this period, the mean half life of ribulosebisphosphate carboxylase was shorter than the one of ATP sulfurylase and of adenosine 5'-phosphosulfate sulfotransferase. These experiments clearly show that ribulosebisphosphate carboxylase was preferentially lost from beech leaves during autumnal senescence as compared to ATP sulfurylase and adenosine 5'-phosphosulfate sulfotransferase.  相似文献   

16.
Biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase that catalyzes the first committed step in fatty acid synthesis. The Escherichia coli biotin carboxylase is readily isolated from the other components of the acetyl-CoA carboxylase complex such that enzymatic activity is retained. The three-dimensional structure of biotin carboxylase, determined by x-ray crystallography, demonstrated that the enzyme is a homodimer consisting of two active sites in which each subunit contains a complete active site. To understand how each subunit contributes to the overall function of biotin carboxylase, we made hybrid molecules in which one subunit had a wild-type active site, and the other subunit contained an active site mutation known to significantly affect the activity of the enzyme. One of the two genes encoded a poly-histidine tag at its N terminus, whereas the other gene had an N-terminal FLAG epitope tag. The two genes were assembled into a mini-operon that was induced to give high level expression of both enzymes. "Hybrid" dimers composed of one subunit with a wild-type active site and a second subunit having a mutant active site were obtained by sequential chromatographic steps on columns of immobilized nickel chelate and anti-FLAG affinity matrices. In vitro kinetic studies of biotin carboxylase dimers in which both subunits were wild type revealed that the presence of the N-terminal tags did not alter the activity of the enzyme. However, kinetic assays of hybrid dimer biotin carboxylase molecules in which one subunit had an active site mutation (R292A, N290A, K238Q, or E288K) and the other subunit had a wild-type active site resulted in 39-, 28-, 94-, and 285-fold decreases in the activity of these enzymes, respectively. The dominant negative effects of these mutant subunits were also detected in vivo by monitoring the rate of fatty acid biosynthesis by [(14)C]acetate labeling of cellular lipids. Expression of the mutant biotin carboxylase genes from an inducible arabinose promoter resulted in a significantly reduced rate of fatty acid synthesis relative to the same strain that expressed the wild type gene. Thus, both the in vitro and in vivo data indicate that both subunits of biotin carboxylase are required for activity and that the two subunits must be in communication during enzyme function.  相似文献   

17.
Mutation of the sid gene in Festuca pratensis prevents chlorophyll degradation. The senescing leaves retain their chlorophyll complement and stay green. Nevertheless, CO2 assimilation and ribulose-bisphosphate carboxylase/oxygenase content decline in both mutant and wild-type plants. Photosynthesis and chlorophyll a fluorescence measurements were performed in air and at low oxygen to prevent photorespiration. The maximum extractable activity of ribulose 1,5 bisphosphate carboxylase was higher in the senescent mutant leaves than in those of the wild-type control hut Mas much lower than that observed in the mature leaves of either genotype. The activation state of this enzyme was similar in mutant and wild-type lines at equivalent stages of development. Analysis of chlorophyll a fluorescence quenching with varying irradianco showed similar characteristics for mature leaves of the two genotypes. Genotypic variations in photosystem II (I'SII) efficiency were observed only in the senescent leaves. Photochemical quenching and the quantum efficiency of PSII were greater in the senescent mutant leaves than in (he wild type at a given irradiance. The calculated electron flux through PSII was substantially higher in the mutant with a greater proportion of electrons directed to photorespiration. Maximum catalytic activities of ascorbate peroxidase decreased in senescent compared to mature leaves of both genotypes, while glutathione reductase and monodehydroascorbate reductase were unchanged in both cases. Superoxide dismutase activity was approximately doubled and dehydroascorbate reductase activity was three times higher in senescent leaves compared with the mature leaves of both genotypes. In no case was there a difference in enzyme activities between mutant and wild type at equivalent growth stages. The pool of reduced ascorbate was similar in the mature leaves of the two genotypes, whereas it was significantly higher in the senescent leaves of the mutant compared with the wild type. Conversely, the hydrogen peroxide content was significantly higher in the mature leaves of the wild type than in those of the mutant, but in senescent leaves similar values were obtained. In leaves subjected to chilling stress the reduced ascorbate pool was higher in both mature and senescent leaves of the mutant than in their wild-type counterparts. Similarly, the hydrogen peroxide pool was significantly lower in both mature and senescent leaves of the mutant than in the wild type. We conclude that, in spite of deceased CO2 assimilation, the mutant is capable of high rates of electron Slow. The high ascorbate/hydrogen peroxide ratio observed in the mutant, particularly at low temperatures, suggests that the senescent leaves are not subject to enhanced oxidative stress.  相似文献   

18.
The synthesis and activation of ribulosebisphosphate carboxylase was studied in etiolated barley leaves during increasing periods of light irradiation. Comparisons were made among enzymatic activity, 14C-amino acid incorporation into anti-ribulosebisphosphate carboxylase precipitable and 16S protein, and total mass of enzyme. A major portion of newly synthesized anti-ribulosebisphosphate carboxylase specific protein preceded light-induced increase in enzyme activity by a significant period of time. These findings are consistent with a model in which both subunits of ribulosebisphosphate carboxylase are synthesized in response to an early event in greening and subsequently become associated to active oligomeric carboxylase species.  相似文献   

19.
Glyoxylate is a slowly reversible inhibitor of the CO2/Mg2+-activated form of ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach leaves. Inactivation occurred with an apparent dissociation constant of 3.3 mM and a maximum pseudo-first-order rate constant of 7 X 10(-3) s-1. The rate constant for reactivation was 1.2 X 10(-2) s-1. Glyoxylate did not cause differential inhibition of ribulosebisphosphate carboxylase or oxygenase activities. 6-Phosphogluconate protected the enzyme from inactivation by glyoxylate. Glyoxylate was incorporated irreversibly into the large subunit of ribulosebisphosphate carboxylase after reduction with sodium borohydride. Activated enzyme incorporated 1.3 mol of glyoxylate per mole protomer, while enzyme treated with carboxyarabinitol 1,5-bisphosphate (CABP) to protect the active sites incorporated only 0.3 mol glyoxylate per mole protomer. The data suggest that glyoxylate forms a Schiff base with a lysyl residue in the region of the catalytic site. Glyoxylate stimulated the activity of the unactivated enzyme by about twofold. Pseudo-first-order inactivation also occurred with the unactivated enzyme after the initial stimulation by glyoxylate, although at a much slower rate than with the activated enzyme. Glyoxylate treatment of partially activated enzyme did not stimulate formation of the quaternary complex of enzyme X CO2 X Mg2+ X CABP.  相似文献   

20.
The unusual chemical properties of active-site Lys-329 of ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have suggested that this residue is required for catalysis. To test this postulate Lys-329 was replaced with glycine, serine, alanine, cysteine, arginine, glutamic acid or glutamine by site-directed mutagenesis. These single amino acid substitutions do not appear to induce major conformational changes because (i) intersubunit interactions are unperturbed in that the purified mutant proteins are stable dimers like the wild-type enzyme and (ii) intrasubunit folding is normal in that the mutant proteins bind the competitive inhibitor 6-phosphogluconate with an affinity similar to that of wild-type enzyme. In contrast, all of the mutant proteins are severely deficient in carboxylase activity (less than 0.01% of wild-type) and are unable to form the exchange-inert complex, characteristic of the wild-type enzyme, with the transition-state analogue carboxyarabinitol bisphosphate. These results underscore the stringency of the requirement for a lysyl side-chain at position 329 and imply that Lys-329 is involved in catalysis, perhaps stabilizing a transition state in the overall reaction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号