首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A hydrodynamic theory describing the stalk dynamics and lipid flows upon BLM hemifusion was developed. The value of intermonolayer viscosity, etar, for membranes formed from azolectin mixed with lysophosphatidylcholine (7.10(-4) mg/ml) in n-decane, etar approximately 10(-9) g/s, was determined from comparison of the theoretical calculations and literature data. For membranes formed in squalene, the values etar approximately 10(-7) g/s for phosphatidylethanolamine and etar approximately 2-10(-7) g/s for azolectin were obtained. The calculated values are close to the published results of independent experiments which shows that the developed theory describes well the stalk growth and lipid flow.  相似文献   

2.
A model is proposed for hydrocarbon chain dynamics in lipid bilayers. In the upper and middle parts of the chain all motion occurs by concerted rotations around at least two carbon carbon bonds at a time, preserving a structural with kinks (that is gauche±trans gauche? conformations) as the only deviations from the all-trans chain. At the end, independent rotations around carboncarbon bonds play a larger and larger part. This gives a reasonable interpretation of deuterium NMR data.  相似文献   

3.
Molecular dynamics simulations of proteins in lipid bilayers   总被引:1,自引:0,他引:1  
With recent advances in X-ray crystallography of membrane proteins promising many new high-resolution structures, molecular dynamics simulations will become increasingly valuable for understanding membrane protein function, as they can reveal the dynamic behavior concealed in the static structures. Dramatic increases in computational power, in synergy with more efficient computational methodologies, now allow us to carry out molecular dynamics simulations of any structurally known membrane protein in its native environment, covering timescales of up to 0.1 micros. At the frontiers of membrane protein simulations are ion channels, aquaporins, passive and active transporters, and bioenergetic proteins.  相似文献   

4.
Lipid bilayers can be induced to adhere to each other by molecular mediators, and, depending on the lipid composition, such adhesion can lead to merging of the contacting monolayers in a process known as hemifusion. Such bilayer-bilayer reactions have never been systematically studied. In the course of our studies of membrane-active molecules, we encountered such reactions. We believe that they need to be understood whenever bilayer-bilayer interactions take place, such as during membrane fusion. For illustration, we discuss three examples: spontaneous adhesion between phospholipid bilayers induced by low pH, polymer-induced osmotic depletion attraction between lipid bilayers, and anionic lipid bilayers cross-bridged by multicationic peptides. Our purpose here is to describe a general method for studying such interactions. We used giant unilamellar vesicles, each of which was aspirated in a micropipette so that we could monitor the tension of the membrane and the membrane area changes during the bilayer-bilayer interaction. We devised a general method for measuring the free energy of adhesion or hemifusion. The results show that the energies of adhesion or hemifusion of lipid bilayers could vary over 2 orders of magnitude from −1 to −50 × 10−5 J/m2 in these examples alone. Our method can be used to measure the energy of transition in each step of lipid transformation during membrane fusion. This is relevant for current research on membrane fusion, which focuses on how fusion proteins induce lipid transformations.  相似文献   

5.
Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of approximately 38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be approximately 3 x 10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.  相似文献   

6.
Energetics and dynamics of SNAREpin folding across lipid bilayers   总被引:3,自引:0,他引:3  
Membrane fusion occurs when SNAREpins fold up between lipid bilayers. How much energy is generated during SNAREpin folding and how this energy is coupled to the fusion of apposing membranes is unknown. We have used a surface forces apparatus to determine the energetics and dynamics of SNAREpin formation and characterize the different intermediate structures sampled by cognate SNAREs in the course of their assembly. The interaction energy-versus-distance profiles of assembling SNAREpins reveal that SNARE motifs begin to interact when the membranes are 8 nm apart. Even after very close approach of the bilayers (approximately 2-4 nm), the SNAREpins remain partly unstructured in their membrane-proximal region. The energy stabilizing a single SNAREpin in this configuration (35 k(B)T) corresponds closely with the energy needed to fuse outer but not inner leaflets (hemifusion) of pure lipid bilayers (40-50 k(B)T).  相似文献   

7.
We investigated the application of inelastic x-ray scattering (IXS) to lipid bilayers. This technique directly measures the dynamic structure factor S(q,omega) which is the space-time Fourier transform of the electron density correlation function of the measured system. For a multiatomic system, the analysis of S(q,omega) is usually complicated. But for multiple bilayers of lipid, S(q,omega) is dominated by chain-chain correlations within individual bilayers. Thus IXS provides a unique probe for the collective dynamics of lipid chains in a bilayer that cannot be obtained by any other method. IXS of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylcholine + cholesterol at two different concentrations were measured. S(q,omega) was analyzed by three-mode hydrodynamic equations, including a thermal diffusive mode and two propagating acoustic modes. We obtained the dispersion curves for the phonons that represent the collective in-plane excitations of lipid chains. The effect of cholesterol on chain dynamics was detected. Our analysis shows the importance of having a high instrument resolution as well as the requirement of sufficient signal-to-noise ratio to obtain meaningful results from such an IXS experiment. The requirement on signal-to-noise also applies to molecular dynamics simulations.  相似文献   

8.
Hsu JC  Yip CM 《Biophysical journal》2007,92(12):L100-L102
Identifying the mechanisms responsible for the interaction of peptides with cell membranes is critical to the design of new antimicrobial peptides and membrane transporters. We report here the results of a computational simulation of the interaction of the 13-residue peptide indolicidin with single-phase lipid bilayers of dioleoylphosphatidylcholine, distearoylphosphatidylcholine, dioleoylphosphatidylglycerol, and distearoylphosphatidylglycerol. Ensemble analysis of the membrane-bound peptide revealed that, in contrast to the extended, linear backbone structure reported for indolicidin in sodium dodecyl sulphate detergent micelles, the peptide adopts a boat-shaped conformation in both phosphatidylglycerol and phosphatidylcholine lipid bilayers, similar to that reported for dodecylphosphocholine micelles. In agreement with fluorescence and NMR experiments, simulations confirmed that the peptide localizes in the membrane interface, with the distance between phosphate headgroups of each leaflet being reduced in the presence of indolicidin. These data, along with a concomitant decrease in lipid order parameters for the upper-tail region, suggest that indolicidin binding results in membrane thinning, consistent with recent in situ atomic force microscopy studies.  相似文献   

9.
Molecular dynamics simulations of fully hydrated Dipalmitoylphosphatidylcholine bilayers, extending temporal and spatial scales by almost one order of magnitude, are presented. The present work reaches system sizes of 1024 lipids and times 10-60 ns. The simulations uncover significant dynamics and fluctuations on scales of several nanoseconds, and enable direct observation and spectral decomposition of both undulatory and thickness fluctuation modes. Although the former modes are strongly damped, the latter exhibit signs of oscillatory behavior. From this, it has been possible to calculate mesoscopic continuum properties in good agreement with experimental values. A bending modulus of 4 x 10(-20) J, bilayer area compressibility of 250-300 mN/m, and mode relaxation times in the nanosecond range are obtained. The theory of undulatory motions is revised and further extended to cover thickness fluctuations. Finally, it is proposed that thickness fluctuations is the explanation to the observed system-size dependence of equilibrium-projected area per lipid.  相似文献   

10.
In order to understand the interaction between naratriptan and a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC), we carried out molecular dynamics simulations. The simulations were performed considering neutral and protonated ionization states, starting from different initial conditions. At physiological pH, the protonated state of naratriptan is predominant. It is expected that neutral compounds could have larger membrane partition than charged compounds. However, for the specific case of triptans, it is difficult to study neutral species in membranes experimentally, making computer simulations an interesting tool. When the naratriptan molecules were originally placed in water, they partitioned between the bilayer/water interface and water phase, as has been described for similar compounds. From this condition, the drugs displayed low access to the hydrophobic environment, with no significant effects on bilayer organization. The molecules anchored in the interface, due mainly to the barrier function of the polar and oriented lipid heads. On the other hand, when placed inside the bilayer, both neutral and protonated naratriptan showed self-aggregation in the lipid tail environment. In particular, the protonated species exhibited a pore-like structure, dragging water through this environment.
Graphical Abstract Different behaviour of Naratriptan and Sumatriptan, when the drugs were originally placed in the lipid core
  相似文献   

11.
Cationic lipid membranes are known to form compact complexes with DNA and to be effective as gene delivery agents both in vitro and in vivo. Here we employ molecular dynamics simulations for a detailed atomistic study of lipid bilayers consisting of a mixture of cationic dimyristoyltrimethylammonium propane (DMTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC). Our main objective is to examine how the composition of the DMPC/DMTAP bilayers affects their structural and electrostatic properties in the liquid-crystalline phase. By varying the mole fraction of DMTAP, we have found that the area per lipid has a pronounced nonmonotonic dependence on the DMTAP concentration, with a minimum around the point of equimolar DMPC/DMTAP mixture. We show that this behavior has an electrostatic origin and is driven by the interplay between positively charged TAP headgroups and the zwitterionic phosphatidylcholine (PC) heads. This interplay leads to considerable reorientation of PC headgroups for an increasing DMTAP concentration, and gives rise to major changes in the electrostatic properties of the lipid bilayer, including a significant increase of total dipole potential across the bilayer and prominent changes in the ordering of water in the vicinity of the membrane. Moreover, chloride counterions are bound mostly to PC nitrogens implying stronger screening of PC heads by Cl ions compared to TAP headgroups. The implications of these findings are briefly discussed.  相似文献   

12.
Angle-resolved fluorescence depolarization experiments were carried out on 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) molecules embedded in macroscopically oriented multilayers of saturated [dimyristoylphosphatidylcholine (DMPC)] and unsaturated [palmitoyloleoylphosphatidylcholine (POPC), dioleoylphosphatidylcholine (DOPC), dilineoylphosphatidylcholine (DLPC), plant digalactosyldiglyceride (DGDG)] lipids with and without cholesterol. In all the lipid systems studied the order parameter (P2) of TMA-DPH molecules was found to be higher than that for DPH. Considerations of the order parameter (P4), however, indicate that DPH molecules have a heterogeneous distribution in bilayers of unsaturated lipids, with a significant fraction of the molecules lying with their long axes parallel to the bilayer planes. Both the DPH and TMA-DPH molecules exhibit a decrease in the molecular order as well as a decrease in their rates of motion on increasing the unsaturation of the hydrocarbon chains. The addition of cholesterol tends to reverse this effect, with an increase in both the order and dynamics. Bilayers of DOPC, however, exhibit a somewhat different result. It is suggested that the discrepancies between these observations and findings with lipid vesicle systems simply reflect the effects of curvature on the behavior of the probe molecules. The results indicate that the concept of membrane fluidity must be used with great caution.  相似文献   

13.
Surface areas and fluctuations evaluated from 50 ns molecular dynamics simulations of fully hydrated dipalmitoylphosphatidylcholine (DPPC) bilayers in a 1:2 trehalose:lipid ratio carried out at surface tensions 10, 17 and 25 dyn/cm/leaflet are compared with those of pure bilayers under the same conditions. Trehalose increases the surface area, as consistent with the surface tension lowering observed in simulations at constant area. The system bulk elastic modulus K b  = 1.5 ± 0.3 × 1010 dyn/cm2. It is independent of bilayer surface area and trehalose content within statistical error. In contrast, the area elastic modulus K a shows a strong area dependence. At 64 Å2/lipid (the experimental surface area), K a  = 138 ± 26 dyn/cm for a pure DPPC bilayer and 82 ± 10 dyn/cm for one with trehalose; i.e. trehalose increases fluidity of the bilayer surface at this area per lipid.  相似文献   

14.
Lipid peroxidation plays an important role in cell membrane damage. We investigated the effect of lipid peroxidation on the properties of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) lipid bilayers using molecular dynamics simulations. We focused on four main oxidation products of linoleic acid with either a hydroperoxide or an aldehyde group: 9-trans, cis-hydroperoxide linoleic acid, 13-trans, cis-hydroperoxide linoleic acid, 9-oxo-nonanoic acid, and 12-oxo-9-dodecenoic acid. These oxidized chains replaced the sn-2 linoleate chain. The properties of PLPC lipid bilayers were characterized as a function of the concentration of oxidized lipids, with concentrations from 2.8% to 50% for each oxidation product. The introduction of oxidized functional groups in the lipid tail leads to an important conformational change in the lipids: the oxidized tails bend toward the water phase and the oxygen atoms form hydrogen bonds with water and the polar lipid headgroup. This conformational change leads to an increase in the average area per lipid and, correspondingly, to a decrease of the bilayer thickness and the deuterium order parameters for the lipid tails, especially evident at high concentrations of oxidized lipid. Water defects are observed in the bilayers more frequently as the concentration of the oxidized lipids is increased. The changes in the structural properties of the bilayer and the water permeability are associated with the tendency of the oxidized lipid tails to bend toward the water interface. Our results suggest that one mechanism of cell membrane damage is the increase in membrane permeability due to the presence of oxidized lipids.  相似文献   

15.
Conjugated linoleic acids (CLA) are found naturally in dairy products. Two isomers of CLA, that differ only in the location of cis and trans double bonds, are found to have distinct and different biological effects. The cis 9 trans 11 (C9T11) isomer is attributed to have the anti-carcinogenic effects, while the trans 10 cis 12 (T10C12) isomer is believed to be responsible for the anti-obesity effects. Since dietary CLA are incorporated into membrane phospholipids, we have used Molecular Dynamics (MD) simulations to investigate the comparative effects of the two isomers on lipid bilayer structure. Specifically, simulations of phosphatidylcholine lipid bilayers in which the sn-2 chains contained one of the two isomers of CLA were performed. Force field parameters for the torsional potential of double bonds were obtained from ab initio calculations. From the MD trajectories we calculated and compared structural properties of the two lipid bilayers, including areas per molecule, density profiles, thickness of bilayers, tilt angle of tail chains, order parameters profiles, radial distribution function (RDF) and lateral pressure profiles. The main differences found between bilayers of the two CLA isomers, are (1) the order parameter profile for C9T11 has a dip in the middle of sn-2 chain while the profile for T10C12 has a deeper dip close to terminal of sn-2 chain, and (2) the lateral pressure profiles show differences between the two isomers. Our simulation results reveal localized physical structural differences between bilayers of the two CLA isomers that may contribute to different biological effects through differential interactions with membrane proteins or cholesterol.  相似文献   

16.
Traaseth NJ  Buffy JJ  Zamoon J  Veglia G 《Biochemistry》2006,45(46):13827-13834
Phospholamban (PLN), a single-pass membrane protein, regulates heart muscle contraction and relaxation by reversible inhibition of the sarco(endo)plasmic reticulum Ca-ATPase (SERCA). Studies in detergent micelles and oriented lipid bilayers have shown that in its monomeric form PLN adopts a dynamic L shape (bent or T state) that is in conformational equilibrium with a more dynamic R state. In this paper, we use solid-state NMR on both uniformly and selectively labeled PLN to refine our initial studies, describing the topology and dynamics of PLN in oriented lipid bilayers. Two-dimensional PISEMA (polarization inversion spin exchange at the magic angle) experiments carried out in DOPC/DOPE mixed lipid bilayers reveal a tilt angle of the transmembrane domain with respect to the static magnetic field, of 21 +/- 2 degrees and, at the same time, map the rotation angle of the transmembrane domain with respect to the bilayer. PISEMA spectra obtained with selectively labeled samples show that the cytoplasmic domain of PLN is helical and makes an angle of 93 +/- 6 degrees with respect to the bilayer normal. In addition, using samples tilted by 90 degrees , we find that the transmembrane domain of PLN undergoes fast long-axial rotational diffusion about the bilayer normal with the cytoplasmic domain undergoing this motion and other complex dynamics, scaling the values of chemical shift anisotropy. While this dynamic was anticipated by previous solution NMR relaxation studies in micelles, these measurements in the anisotropic lipid environment reveal new dynamic and conformational features encoded in the free protein that might be crucial for SERCA recognition and subsequent inhibition.  相似文献   

17.
Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation.  相似文献   

18.
19.
Magnesium sulfate (MgSO4) has been used as a protector agent for many diseases related to oxidative stress. The effect of MgSO4 on the oxidized lipid bilayer has not yet been studied using molecular dynamics calculations. In this work, the effects of oxidation were evaluated by using a POPC membrane model at different concentrations of its aldehyde (-CHO) and hydroperoxide (-OOH) derivatives with and without MgSO4. Several quantitative and qualitative properties were evaluated, such as membrane thickness, area per lipid, area compressibility modulus, snapshots after simulation finish, density distributions, time evolutions of oxidized group positions, and radial distributions of oxidized group concerning Mg. Results indicate that in the absence of MgSO4 the mobility of oxidized groups, particularly –CHO, toward the surface interface is high. At a low oxidation level of the bilayer there is an increase in the compressibility modulus as compared to the unoxidized bilayer. MgSO4, at a low oxidation level, tends to lessen the oxidation effects by lowering the dispersion in the distribution of oxidized species toward the membrane surface and the water region. However, MgSO4 does not change the trends of decreasing membrane thickness and area compressibility modulus and increasing area per lipid upon oxidation. In this regard, MgSO4 diminishes the electrostatic long-distance attractive interactions between the oxidized groups and the charged headgroups of the interface, owing to the Mg+2 and SO4-2 screening effects and an electrostatic stabilization of the headgroups, preventing the pore formation, which is well-known to occur in oxidized membranes.  相似文献   

20.
Gramicidin A (gA) is a 15-amino-acid antibiotic peptide with an alternating L-D sequence, which forms (dimeric) bilayer-spanning, monovalent cation channels in biological membranes and synthetic bilayers. We performed molecular dynamics simulations of gA dimers and monomers in all-atom, explicit dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. The variation in acyl chain length among these different phospholipids provides a way to alter gA-bilayer interactions by varying the bilayer hydrophobic thickness, and to determine the influence of hydrophobic mismatch on the structure and dynamics of both gA channels (and monomeric subunits) and the host bilayers. The simulations show that the channel structure varied little with changes in hydrophobic mismatch, and that the lipid bilayer adapts to the bilayer-spanning channel to minimize the exposure of hydrophobic residues. The bilayer thickness, however, did not vary monotonically as a function of radial distance from the channel. In all simulations, there was an initial decrease in thickness within 4–5 Å from the channel, which was followed by an increase in DOPC and POPC or a further decrease in DLPC and DMPC bilayers. The bilayer thickness varied little in the monomer simulations—except one of three independent simulations for DMPC and all three DLPC simulations, where the bilayer thinned to allow a single subunit to form a bilayer-spanning water-permeable pore. The radial dependence of local lipid area and bilayer compressibility is also nonmonotonic in the first shell around gA dimers due to gA-phospholipid interactions and the hydrophobic mismatch. Order parameters, acyl chain dynamics, and diffusion constants also differ between the lipids in the first shell and the bulk. The lipid behaviors in the first shell around gA dimers are more complex than predicted from a simple mismatch model, which has implications for understanding the energetics of membrane protein-lipid interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号