首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The inhibition of locomotion by light (masking) was investigated in Syrian hamsters. When 1-h pulses of light were presented in the early night, activity was strongly suppressed by irradiances of about 1 lx or greater. Ultradian light-dark cycles were used as another way to study masking. Hamsters were unable to entrain to 3.5:3.5-h light-dark cycles, thus permitting the masking and the entraining effects of light to be distinguished. Light had greater suppressive effects on activity in home cages than on activity in novel running wheels. Moreover, in home cages activity remained very low for about 30 min after lights were turned off. Post-pulse suppression of activity was not simply a consequence of reduced running, as shown by experiments in which running was temporarily prevented by locking the wheels. A phase response curve for masking was obtained by placing hamsters in novel wheels for 3-h periods at various times throughout their circadian cycles, and then superimposing a 30-min light pulse. The suppressive effect of light was maximal around the onset of activity, which normally coincides with dusk in hamsters. This may have adaptive value in limiting foraging to the hours of darkness. Accepted: 8 February 1999  相似文献   

3.
Wheel running reinforces the behavior that generates it and produces a preference for the context that follows it. The goal of the present study was to demonstrate both of these effects in the same animals. Twelve male Wistar rats were first exposed to a fixed-interval 30 s schedule of wheel-running reinforcement. The operant was lever-pressing and the reinforcer was the opportunity to run for 45 s. Following this phase, the method of place conditioning was used to test for a rewarding aftereffect following operant sessions. On alternating days, half the rats responded for wheel-running reinforcement while the other half remained in their home cage. Upon completion of the wheel-running reinforcement sessions, rats that ran and rats that remained in their home cages were placed into a chamber of a conditioned place preference (CPP) apparatus for 30 min. Each animal received six pairings of a distinctive context with wheel running and six pairings of a different context with their home cage. On the test day, animals were free to move between the chambers for 10 min. Results showed a conditioned place preference for the context associated with wheel running; however, time spent in the context associated with running was not related to wheel-running rate, lever-pressing rate, or post-reinforcement pause duration.  相似文献   

4.
The domestication process of the laboratory rat has been going on for several hundred generations in stable environmental conditions, which may have affected their physiological and behavioural functions, including their circadian system. Rats tested in our ethological experiments were laboratory-bred wild Norway rats (WWCPS), two strains of pigmented laboratory rats (Brown Norway and Long Evans), and two strains of albino rats (Sprague-Dawley and Wistar). Rats were placed in purpose-built enclosures and their cycle of activity (time spent actively outside the nest) has been studied for one week in standard light conditions and for the next one in round-the-clock darkness. The analysis of circadian pattern of outside-nest activity revealed differences between wild, pigmented laboratory, and albino laboratory strains. During daytime, albino rats showed lower activity than pigmented rats, greater decrease in activity when the light was turned on and greater increase in activity when the light was switched off, than pigmented rats. Moreover albino rats presented higher activity during the night than wild rats. The magnitude of the change in activity between daytime and nighttime was also more pronounced in albino rats. Additionaly, they slept outside the nest more often during the night than during the day. These results can be interpreted in accordance with the proposition that intense light is an aversive stimulus for albino rats, due to lack of pigment in their iris and choroid, which reduces their ability to adapt to light. Pigmented laboratory rats were more active during lights on, not only in comparison to the albino, but also to the wild rats. Since the difference seems to be independent of light intensity, it is likely to be a result of the domestication process. Cosinor analysis revealed a high rhythmicity of circadian cycles in all groups.  相似文献   

5.
Djungarian hamsters (Phodopus sungorus) exhibit pronounced winter acclimatization with changes in body mass, gonads, fur, and thermogenic capacity induced by decreasing daylength. To determine whether the annual activity pattern reflects the crucial role of the photoperiod for the hamsters' seasonality, animals with and without access to a running wheel (RW) were exposed to natural lighting conditions (~52°N) and ambient temperatures. Registration of locomotion in hamsters with a RW revealed a clear activity pattern closely related to dusk and dawn throughout the year. In contrast, animals without RW access showed a less stable phase relationship between the activity and the day‐night cycle in autumn and winter. During these seasons, the activity phase either exceeded the dark phase or even became indistinguishable from the rest phase. This correlated not only with increased locomotion during the light phase but also over the whole 24 h period, especially in autumn. In RW hamsters, a similar but attenuated trend was found that possibly reflects foraging due to increased food hoarding before winter. The more stable correlation between activity time and night length in RW hamsters might be explained by a suppressing effect of light on wheel‐running behavior (negative masking) and/or a stabilizing effect of running exercise on rhythmicity. In a further experiment, the phase‐reference points lights‐off and lights‐on within artificial light‐dark (LD) cycles were compared to sunset and sunrise in an intermediate ratio of light and dark and in long days. With respect to the defined phase‐reference points of the zeitgeber, the phase relation between activity and the LD cycle was similar in natural and corresponding artificial lighting conditions, and dependent on the LD ratio.  相似文献   

6.
Abstract

Endogenous and exogenous effects of light on adult eclosion in Hyphantria cunea were tested by exposure to various light regimes. Regression analysis showed that the position of the eclosion peak after lights on was proportional to the length of the photophase, and that the peak was influenced by the timing of both lights‐on and lights‐off. Under photoperiods of 2–12 hours LD cycle, the eclosion peak was situated after lights‐off, but moved into the light phase as the photophase increased to 22 hours. Pupae were exposed to 3 “skeleton”; photoperiods of LDLD2:2:6:14, 4:2:4:14 and 6:2:2:14. Under the first of these, most adults emerged at the start or just before the longest dark period. Under the second and third skeleton regimes, 20% and 70% respectively of pupae emerged during the shorter dark period. When the compound eyes of the pharate adults were covered, adults smerged 1–4 hours before lights‐off under LD10:14, compared to a control group which emerged just after lights‐off. When pupae were transferred from LD to LL or DD conditions, the eclosion peak occurred approximately every 24 hours after the last LD peak. Results suggest that light received by the compound eyes influences the eclosion rhythm, either through an exogenous masking effect, or by altering the phase of the pacemaker controlling eclosion.  相似文献   

7.
Deterioration in the ability to perform "Activities of daily living" (ADL) is an early sign of Alzheimer's disease (AD). Preclinical behavioural screening of possible treatments for AD currently largely focuses on cognitive testing, which frequently demands expensive equipment and lots of experimenter time. However, human episodic memory (the most severely affected aspect of memory in AD) is different to rodent memory, which seems to be largely non-episodic. Therefore the present ways of screening for new AD treatments for AD in rodents are intrinsically unlikely to succeed. A new approach to preclinical screening would be to characterise the ADL of mice. Fortuitously, several such assays have recently been developed at Oxford, and here the three most sensitive and well-characterised are presented. Burrowing was first developed in Oxford. It evolved from a need to develop a mouse hoarding paradigm. Most published rodent hoarding paradigms required a distant food source to be linked to the home cage by a connecting passage. This would involve modifying the home cage as well as making a mouse-proof connecting passage and food source. So it was considered whether it would be possible to put the food source inside the cage. It was found that if a container was placed on the floor it was emptied by the next morning., The food pellets were, however, simply deposited in a heap at the container entrance, rather than placed in a discrete place away from the container, as might be expected if the mice were truly hoarding them. Close inspection showed that the mice were performing digging ("burrowing") movements, not carrying the pellets in their mouths to a selected place as they would if truly hoarding them. Food pellets are not an essential substrate for burrowing; mice will empty tubes filled with sand, gravel, even soiled bedding from their own cage. Moreover, they will empty a full tube even if an empty one is placed next to it. Several nesting protocols exist in the literature. The present Oxford one simplifies the procedure and has a well-defined scoring system for nest quality. A hoarding paradigm was later developed in which the mice, rather than hoarding back to the real home cage, were adapted to living in the "home base" of a hoarding apparatus. This home base was connected to a tube made of wire mesh, the distal end of which contained the food source. This arrangement proved to yield good hoarding behaviour, as long as the mice were adapted to living in the "home base" during the day and only allowed to enter the hoarding tube at night.  相似文献   

8.
A practical and inexpensive alternative to the standard primate chair is described. The apparatus is designed to allow easy removal of rhesus monkeys from their home cages and to allow restraint without anesthesia. A portable Plexiglas cage, which can be adjusted to accommodate rhesus monkeys of varying sizes, is placed against an animal's home cage. The animal is then trained to avoid the squeeze mechanism of the home cage by going into the Plexiglas cage. The animal's head can then be secured by means of poles hooked to a light weight collar worn permanently. This device and procedure allows an investigator to work with a restrained animal without resorting to drugs, unnecessary force or chronic restraint. Animals can be transferred daily with this technique with minimal conditioning and cooperation.  相似文献   

9.
Positive reinforcement training techniques were used to gain the cooperation of a socially housed, 3-year-old, insulin-dependent diabetic chimpanzee (Pan troglodytes) in obtaining blood and urine samples for monitoring of glucose levels. A urine collection device, adaptable to many types of caging, allowed collection of urine from the diabetic subject as well as other trained, socially housed animals in their home cages. Four years after initial training, the diabetic subject continued to urinate into the container any time of the day or night, usually within 2 min of presentation of the cue, without removal from the home cage or separation from her companions. Blood samples were readily obtained from the subject by heel puncture or venipuncture. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Corticotropin-releasing factor was administered into the lateral cerebral ventricles of rats. Sixty minutes later, animals were tested in an open field conflict test or in their home cages for a variety of behaviors which have been shown to be related to the degree of responsiveness to novelty. CRF, in a dose related fashion, altered the frequency of those behaviors which are normally expressed in response to the novel environment. Specifically, CRF caused an increase in grooming and decreased in the amount of rearing, the number of approaches to a food pellet placed in the center of the open field, the amount of food eaten in both the open field and the home cage and a decrease in the mean amount of food eaten per approach to the food pedestal.  相似文献   

11.
Ghrelin administration directly into hypothalamic nuclei, including the arcuate nucleus (ArcN) and the paraventricular nucleus (PVN), alters the expression of stress-related behaviors. In the present study we investigated the effect of feeding status on the ability of ghrelin to induce stress and anxiogenesis. Adult male Sprague Dawley rats were implanted with guide cannula targeting either the ArcN or PVN. In the first experiment we confirmed that ArcN and PVN ghrelin treatment produced anxiety-like behavior as measured using the elevated plus maze (EPM) paradigm. Ghrelin was administered during the early dark cycle. Immediately after microinjections rats were placed in the EPM for 5 min. Both ArcN and PVN treatment reduced open arm exploration. The effect was attenuated by pretreatment with the ghrelin 1a receptor antagonist [d-Lys3]-GHRP-6. In a separate group of animals ghrelin was injected into either nucleus and rats were returned to their home cages for 60 min with free access to food. An additional group of rats was returned to home cages with no food access. After 60 min with or without food access all rats were tested in the EPM. Results indicated that food consumption just prior to EPM testing reversed the avoidance of the open arms of the EPM. In contrast, rats injected with ghrelin, placed in their home cage for 60 min without food, and subsequently tested in the EPM, exhibited an increased avoidance of the open arms, consistent with stress activation. Overall, our findings demonstrate that ghrelin 1a receptor blockade and feeding status appear to impact the ability of ArcN and PVN ghrelin to elicit stress and anxiety-like behaviors.  相似文献   

12.
The minimalistic environment of standard laboratory cages can adversely influence the responses of animals in standard behavioural tests and other aspects of the animals' biology. To avoid this, cages should provide for the animals' species-specific behavioural characteristics. We hypothesized that, given their possible capacity for colour vision, laboratory mice, Mus musculus, would show preferences between cages of different colours. Studies show that environmental colour can influence emotionality and task performance in humans, suggesting that cage colour could also affect emotionality and performance of mice in behavioural tests. Seventy-two mice were housed in home cages painted red, black, green or white. Five weeks later, 24 mice were placed individually into an apparatus allowing them to choose between cages of each of the home cage colours. Each mouse showed a highly significant preference, which overall, was unrelated to home cage colour. White cages were most preferred and red were least. Home cage colour had a significant effect on body weight and food consumption as well as on behaviour in a raised plus maze. Mice from red home cages spent most time in the closed arms, indicating greater anxiety, possibly suggesting that the reduced occupancy of the red preference cages resulted from avoidance of environmental conditions that induced a negative mental state. These findings show that laboratory mice have strong preferences between cages of different colours. We also found that an apparently inconsequential environmental variable, home cage colour, can influence responses in standard behavioural tests, which should be considered in assessing the external validity of such tests. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.  相似文献   

13.
The underlying neural causes of the differences between nocturnal and diurnal animals with respect to their patterns of rhythmicity have not yet been identified. These differences could be due to differences in some subpopulation of neurons within the suprachiasmatic nucleus (SCN) or to differences in responsiveness to signals emanating from the SCN. The experiments described in this article were designed to address the former hypothesis by examining Fos expression within vasopressin (VP) neurons in the SCN of nocturnal and diurnal rodents. Earlier work has shown that within the SCN of the diurnal rodent Arvicanthis niloticus, approximately 30% of VP-immunoreactive (IR) neurons express Fos during the day, whereas Fos rarely is expressed in VP-IR neurons in the SCN of nocturnal rats. However, in earlier studies, rats were housed in constant darkness and pulsed with light, whereas Arvicanthis were housed in a light:dark (LD) cycle. To provide data from rats that would permit comparisons with A. niloticus, the first experiment examined VP/Fos double labeling in the SCN of rats housed in a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase. Fos was significantly elevated in the SCN of animals sacrificed during the light compared to the dark phase, but virtually no Fos at either time was found in VP-IR neurons, confirming that the SCN of rats and diurnal Arvicanthis are significantly different in this regard. The authors also evaluated the relationship between this aspect of SCN function and diurnality by examining Fos-IR and VP-IR in diurnal and nocturnal forms of Arvicanthis. In this species, most individuals exhibit diurnal wheel-running rhythms, but some exhibit a distinctly different and relatively nocturnal pattern. The authors have bred their laboratory colony for this trait and used animals with both patterns in this experiment. They examined Fos expression within VP-IR neurons in the SCN of both nocturnal and diurnal A. niloticus kept on a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase, and brains were processed for immunohistochemical identification of Fos and VP. Both the total number of Fos-IR cells and the proportion of VP-IR neurons containing Fos (20%) were higher during the day than during the night. Neither of these parameters differed between nocturnal and diurnal animals. The implications of these findings are discussed.  相似文献   

14.
White light‐emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night‐time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three‐year field experiment in which each of these lighting strategies was simulated in a previously artificial light naïve grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night‐time lighting may ultimately require avoiding its use altogether.  相似文献   

15.
Carrion fly community dynamics: patchiness, seasonality and coexistence   总被引:3,自引:0,他引:3  
ABSTRACT. 1. An outdoor cage experiment was conducted to test the theory that localized interactions facilitate coexistence of species breeding in ephemeral habitats. The same amount of larval resource (50 g of liver) but divided into one, two, four, eight or sixteen pieces was placed into each of fifteen cages once a week from June to September for 4 years.
2. The cage populations were initially mixtures of thirteen species but after 4 years only Lucilia illustris (Meig.), Sarcophaga scoparia Pand. and S.aratrix Pand. remained. Lucilia illustris , by far the most abundant species in the field, predominated in every cage.
3. Sarcophaga went extinct in most cages, but they survived in five cages in which the larval resource was much divided, in agreement with the theoretical prediction.
4. Lucilia silvarum (Meig.) emerged about a week later than L.illustris in early summer; this phenological difference gave rise to a competitive asymmetry between the two species. This difference appears to explain why L.silvarum went extinct in the cages in 3 years, and it may explain why L.silvarum has consistently been less abundant than L.illustris in the natural community.
5. Other differences in phenology, voltinism and rate of development in the flies are described, and such differences are suggested to facilitate regional coexistence of many species in seasonal environments.  相似文献   

16.
Under natural environmental conditions, sea bass feeding rhythms are nocturnal in winter and diurnal the rest of the year. In this paper we describe the effect of contracting and expanding photoperiods and two skeleton photoperiods (SP) on the dual feeding rhythms of sea bass ( Dicentrarchus labrax L. ). To this end, twelve animals were held individually with access to self-feeders. First, the lights on and lights off were progressively delayed and advanced respectively by one hour in group 1 (G1), and conversely in group 2 (G2), so that the fish were exposed from a light/dark (LD) 12L:12D cycle to 2:22 LD (G1) and DL (G2) cycles and finally 0.25:23.75 LD (G1) and DL (G2). In the second experiment two SP's were used involving two light pulses separated by 12 hours, each pulse lasting 0.25 hours during the first two weeks and one hour during the succeeding two weeks. The results showed that diurnal and nocturnal sea bass tended to confine their feeding phase following the contraction of the LD cycle. Both SP's failed to simulate a complete photoperiod. In conclusion, the LD cycle appeared to drive the daily feeding rhythms but, the photoperiod length did not itself control the inversions of nocturnal and diurnal fish, so that other factors, in addition to photoperiod, may be involved in the control of the annual rhythms of phase inversions in sea bass.  相似文献   

17.
Circadian rhythms can be reset by both photic and non-photic stimuli. Recent studies have used long light exposure to produce photic phase shifts or to enhance non-photic phase shifts. The presence or absence of light can also influence the expression of locomotor rhythms through masking; light during the night attenuates locomotor activity, while darkness during the day induces locomotor activity in nocturnal animals. Given this dual role of light, the current study was designed to examine the relative contributions of photic and non-photic components present in a long light pulse paradigm. Mice entrained to a light/dark cycle were exposed to light pulses of various durations (0, 3, 6, 9, or 12 h) starting at the time of lights-off. After the light exposure, animals were placed in DD and were either left undisturbed in their home cages or had their wheels locked for the remainder of the subjective night and subsequent subjective day. Light treatments of 6, 9, and 12 h produced large phase delays. These treatments were associated with decreased activity during the nocturnal light and increased activity during the initial hours of darkness following light exposure. When the wheels were locked to prevent high-amplitude activity, the resulting phase delays to the light were significantly attenuated, suggesting that the activity following the light exposure may have contributed to the overall phase shift. In a second experiment, telemetry probes were used to assess what effect permanently locking the wheels had on the phase shift to the long light pulses. These animals had phase shifts fully as large as animals without any form of wheel lock, suggesting that while non-photic events can modulate photic phase shifts, they do not play a role in the full phase-shift response observed in animals exposed to long light pulses. This paradigm will facilitate investigations into non-photic responses of the mouse circadian system.  相似文献   

18.
Animal studies of the toxicity and metabolism of radionuclides and chemicals often require housing of rats in metabolism cages for excreta collection. Response of rats to toxic substances may be affected by environmental factors such as the type of cage used. Dose-response studies were conducted to assess the effects of two types of cages on the nephrotoxic response of rats to uranium from implanted refined uranium ore (yellowcake). The LD50/21 days was 6 mg of uranium ore per kilogram body weight (6 mg U/kg). The 95% confidence limit (C.L.) was 3-8 mg U/kg for rats housed in metabolism cages beginning on the day of implantation (naive rats). However, for rats housed in metabolism cages for 21 days before implantation (acclimated rats) the LD50/21 days was 360 mg U/kg (95% C.L. = 220-650 mg U/kg), which was the same value obtained for rats housed continuously in polycarbonate cages. This significant difference (P less than 0.01) in response of naive rats compared to response of acclimated rats appeared related to a significantly lower water consumption by the naive rats.  相似文献   

19.
Under natural environmental conditions, sea bass feeding rhythms are nocturnal in winter and diurnal the rest of the year. In this paper we describe the effect of contracting and expanding photoperiods and two skeleton photoperiods (SP) on the dual feeding rhythms of sea bass (Dicentrarchus labrax L.). To this end, twelve animals were held individually with access to self-feeders. First, the lights on and lights off were progressively delayed and advanced respectively by one hour in group 1 (G1), and conversely in group 2 (G2), so that the fish were exposed from a light/dark (LD) 12L:12D cycle to 2:22 LD (G1) and DL (G2) cycles and finally 0.25:23.75 LD (G1) and DL (G2). In the second experiment two SP's were used involving two light pulses separated by 12 hours, each pulse lasting 0.25 hours during the first two weeks and one hour during the succeeding two weeks. The results showed that diurnal and nocturnal sea bass tended to confine their feeding phase following the contraction of the LD cycle. Both SP's failed to simulate a complete photoperiod. In conclusion, the LD cycle appeared to drive the daily feeding rhythms but, the photoperiod length did not itself control the inversions of nocturnal and diurnal fish, so that other factors, in addition to photoperiod, may be involved in the control of the annual rhythms of phase inversions in sea bass.  相似文献   

20.
Following lever-press training on a variable-interval 60-second schedule of food presentation, groups of rats either remained in their home cages or were exposed to the operant chamber, from which lever and food had been removed, for five sessions. The lever was replaced in the chamber and rats from Group 1 (exposure to chamber) and Group 3 (home cage) were returned to the variable-interval schedule. Although response rates in test sessions were somewhat lower than at the end of training, there was no statistically significant difference in rates for either group. Rats in Group 2 (exposure to chamber) and Group 4 (home cage) received two test sessions of extinction. During the first session, Group 2 rates of lever pressing were significantly higher than Group 4 rates. These findings do not support the view that associations between contextual cues and the reinforcer serve to energize instrumental behavior (Pearce & Hall, 1979), and provide only minimal support for the view that contextual cues control responses that compete with the operant (Mills, 1980).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号