首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Klebsiella oxytoca P2 was developed as a biocatalyst for the simultaneous saccharification and fermentation (SSF) of cellulose by chromosomally integrating Zymomonas mobilis genes (pdc, adhB) encoding the ethanol pathway. This strain contains the native ability to transport and metabolize cellobiose, eliminating the need to supplement with β-glucosidase during SSF. To increase the utility of this biocatalyst, we have now chromosomally integrated the celZ gene encoding the primary endoglucanase from Erwinia chrysanthemi. This gene was expressed at high levels by replacing the native promoter with a surrogate promoter derived from Z. mobilis DNA. With the addition of out genes encoding the type II protein secretion system from E. chrysanthemi, over half of the active endoglucanase (EGZ) was secreted into the extracellular environment. The two most active strains, SZ2(pCPP2006) and SZ6(pCPP2006), produced approximately 24 000 IU L−1 of CMCase activity, equivalent to 5% of total cellular protein. Recombinant EGZ partially depolymerized acid-swollen cellulose and allowed the production of small amounts of ethanol by SZ6(pCPP2006) without the addition of fungal cellulase. However, additional endoglucanase activities will be required to complete the depolymerization of cellulose into small soluble products which can be efficiently metabolized to ethanol. Received 14 December 1998/ Accepted in revised form 04 March 1999  相似文献   

2.
Summary The Clostridium thermocellum cellulase genes celA and celC encoding endoglucanase A and C were subcloned in a temperature-regulated Escherichia coli expression vector containing the leftward promoterpl of bacteriophage lambda. The level of gene expression was controlled by thermal inactivation of the heat-sensitive lambda cI857 repressor. Under optimal conditions the recombinant endoglucanases A and C were expressed to a level of 10–15% of total cellular protein. Endoglucanase A was partially exported into the periplasmic space, whereas endoglucanase C was found sequestered within the cytoplasm. Overexpression of the celA gene resulted in decreased cell viability concomitant with the accumulation of endoglucanase A in the membrane fraction. In contrast, high-level synthesis of the celC gene product was well tolerated by the host cell. Overproduced endoglucanase C accumulated as a soluble enzyme without detectable formation of inactive inclusion bodies.  相似文献   

3.
The endoglucanase gene, celCCD, of Clostridium cellulolyticum has been expressed in Escherichia coli. Multiple active polypeptides were detected in the E. coli cells. The relative molecular mass (Mr) of two major active polypeptides were 56 000 (D56) and 38 000 (D38), which were smaller than the deduced Mr of the mature protein (63 401). D56 and D38 were purified from the periplasmic fraction. The N-terminal sequences of the two purified polypeptides were identical to that of the mature endoglucanase (Ala-Ile-Asn-Ser-Gln-Asp-Met-Val---) deduced from the nucleotide sequence. These data indicated that these polypeptides were produced by processing the original mature protein in the C-terminal region. The enzymatic properties of these two polypeptides were very similar, except that the specific activity of D38 was 2–3.5-fold higher than that of D56, and D38 was more heat stable than D56. Correspondence to: T. Kodama  相似文献   

4.
A mechanically transmissible virus obtained from symptomless plants of a red raspberry selection imported into Scotland from Quebec, Canada was indistinguishable serologically from a cherry isolate of cherry rasp leaf virus (CRLV). The raspberry isolate, CRLV-R, was graft transmitted to several virus indicator species and cultivars of Rubus without inducing noticeable symptoms. In Chenopodium quinoa sap, CRLV-R lost infectivity after dilution to 10-5 or heating for 10 min at 60°C but was infective after 16 days (the longest period tested) at 18°, 4° or - 15°C. The virus particles are isometric, c. 28 nm in diameter, and were purified with difficulty from infected C. murale and C. quinoa plants. The particles comprise two nucleoprotein components with sedimentation coefficients of 89 and 115 S and are prone to aggregate during purification. When centrifuged to equilibrium in CS2SO4 solution, purified virus preparations formed two major components with p= 1·28 and 1·36 g/cm3. Virus particles contained two RNA species which, when denatured in glyoxal and electrophoresed in agarose gels, had estimated mol. wt of 2·56 × 106 (RNA-1) and 1·26 × 106 (RNA–2). Infectivity of CRLV-R RNA was abolished by treatment with proteinase K, suggesting that the RNA is linked to protein necessary for infectivity; RNA molecules contained polyadenylate. In reticulocyte lysates, CRLV-R RNA stimulated the incorporation of 3H-leucine, mainly into two polypeptides of estimated mol. wt 200 000 and 102 000. When electrophoresed in polyacrylamide gels, protein obtained from CRLV-R particles purified by centrifugation to equilibrium in Cs2SO4 separated into three bands with estimated mol. wt 26 000 , 23 000 and 21 000.  相似文献   

5.
Summary The polymeric structure of the cyclic AMP-dependent protein kinase (E.C.2.7.1.37) from the dimorphic fungus Mucor rouxii was analyzed through studies of gel filtration and sucrose gradient centrifugation of the holoenzyme and its subunits and by photoaffinity labeling of the regulatory subunit. It was demonstrated that it is a tetramer composed by two regulatory subunits (R) of mol. wt. 75 000 and two catalytic subunits (C) of mol. wt. 41 000 forming a holoenzyme R2C2 of mol. wt. 242 000. Frictional coefficients of 1.55 and 1.62 for the holoenzyme and for the regulatory dimer, respectively, indicate a significant degree of dimensional asymmetry in both molecules. A procedure for the purification of the catalytic subunit of the kinase is presented. The holoenzyme could be bound to a cyclic AMP-agarose column and the catalytic subunit could be eluted by 0.5 M NaCl, well resolved from the bulk of protein. This particular behaviour of the holoenzyme in cyclic AMP-agarose chromatography allowed the inclusion of this step in the purification of the catalytic subunit and corroborated that the holoenzyme was not dissociated by cyclic AMP alone. The isolated catalytic subunit displays Michaelis-Menten behaviour towards kemptide, protamine and histone and is inhibited by sulfhydryl reagents, indicating that the molecule has at least one cysteine residue essential for enzyme activity. The catalytic activity of the isolated C subunit is inactivated by the mammalian protein kinase inhibitor, and is inhibited by the regulatory subunit from homologous and heterologous sources. In general, the properties of the catalytic subunit suggest a structural similarity between Mucor and mammalian C subunits.Abbreviations C catalytic subunit monomer of protein kinase - R regulatory subunit monomer of protein kinase - 8-N3-cyclic AMP 8-azido-cylic AMP - SDS sodium dodecyl sulfate - Pipes piperazine-N,N-bis(2-ethanesulfonic acid) See AcknowledgementsCareer Investigators from the CONICET  相似文献   

6.
Three forms of brain acetylcholinesterase were purified from bovine caudate-nucleus tissue and determined by calibrated gel filtration to have mol.wts. of approx. 120 000 (C), 230 000 (B) and 330 000 (A). [3H]Di-isopropyl phosphorofluoridate (isopropyl moiety labelled) was purified from commercial preparations and its concentration estimated by an enzyme-titration procedure. Brain acetylcholinesterase preparations and enzyme from eel electric tissue were allowed to react with [3H]di-isopropyl phosphorofluridate in phosphate buffer until enzyme activity was inhibited by 98%. Excess of [3H]di-isopropyl phosphorofluoridate that had not reacted was separated from the labelled enzyme protein by gel filtration, or by vacuum filtration or by extensive dialysis. The specificity of active-site labelling was confirmed by use of the enzyme reactivator, pyridine 2-aldoxime. The forms of brain acetylcholinesterase were calculted to contain approximately two (C) four (B) and six (A) active sites per molecule respectively. Acetylcholinesterase (mol.wt. 250 000) from electric-eel tissue was estimated to contain two active sites per molecule. Gradient-gel electrophoresis was used to confirm the estimation of molecular weights of brain acetylcholinesterase forms made by gel filtration. Under the conditions of electrophoresis acetylcholinesterase form A was stable, but form B was converted into a species of approx. 120 000 mol. wt. Similarly, form C of the brain enzyme was converted into a 60 000-mol.wt. form during electrophoresis. These results are in general accord with the suggestion that the multiple forms of brain acetylcholinesterase may be related to the aggregation of a single low-molecular-weight species.  相似文献   

7.
Galactocerebrosidase (β-d-galactosyl-N-acylsphingosine galactohydrolase; EC 3.2.1.46) activity of brain and liver preparations from normal individuals and patients with Krabbe disease (globoid-cell leukodystrophy) have been separated by gel filtration into four different molecular-weight forms. The apparent mol.wts. were 760000±34000 and 121000±10000 for the high- and low-molecular-weight forms (peaks I and IV respectively) and 499000±22000 (mean±s.d.) and 256000±12000 for the intermediate forms (peaks II and III respectively). On examination by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, the high- and low-molecular-weight forms revealed a single protein band with a similar mobility corresponding to a mol.wt. of about 125000. Antigenic identity was demonstrated between the various molecular-weight forms of the normal and the mutant galactocerebrosidases by using antisera against either the high- or the low-molecular-weight enzymes. The high-molecular-weight form of galactocerebrosidase was found to possess higher specific activity toward natural substrates when compared with the low-molecular-weight form. It is suggested that the high-molecular-weight enzyme is the active form in vivo and an aggregation process that proceeds from a monomer (mol.wt. approx. 125000) to a dimer (mol.wt. approx. 250000) and from the dimer to either a tetramer (mol.wt. approx. 500000) or a hexamer (mol.wt. approx. 750000) takes place in normal as well as in Krabbe-disease tissues.  相似文献   

8.
 A gene library of Cellulomonas pachnodae was constructed in Escherichia coli and was screened for endoglucanase activity. Five endoglucanase-positive clones were isolated that carried identical DNA fragments. The gene, designated cel6A, encoding an endoglucanase enzyme, belongs to the glycosyl hydrolase family 6 (cellulase family B). The recombinant Cel6A had a molecular mass of 53 kDa, a pH optimum of 5.5, and a temperature optimum of 50–55 °C. The recombinant endoglucanase Cel6A bound to crystalline cellulose and beech litter. Based on amino acid sequence similarity, a clear cellulose-binding domain was not distinguished. However, the regions in the Cel6A amino acid sequence at the positions 262–319 and 448–473, which did not show similarity to any of the known family-6 glycosyl hydrolases, may be involved in substrate binding. Received: 14 January 1999 / Received revision: 29 March 1999 / Accepted: 6 April 1999  相似文献   

9.
A novel gene encoding an endoglucanase designated Cel5D was cloned from a marine bacterium Martelella mediterranea by genomic library. The gene had a 1,113 bp opening reading frame encoding a 371-amino-acid protein with a molecular mass of 40,508 Da and containing a putative signal peptide (41 amino acids). Cel5D had low similarity (48–51% identity) with other known endoglucanases and consisted of one single catalytic domain, which belonged to the glycosyl hydrolase family 5. The maximum activity of Cel5D was observed at 60°C and pH 5.0. Cel5D displayed broad pH stability within the range of pH 3.0–11.0 and retained hydrolytic activity in the presence of a wide variety of metal ions and some chemical reagents. These characteristics suggest that the enzyme has considerable potential in industrial applications.  相似文献   

10.
1. The mucoprotein from pig gastric mucus has been purified by equilibrium centrifugation in a CsCl gradient. 2. This procedure removes the non-covalently bound protein, which is closely associated with the mucoprotein and not easily removed from it by gel filtration. 3. The purified mucoprotein is separable by gel filtration into a high-molecular-weight mucoprotein A (mol.wt. 2.3×106) and a low-molecular-weight mucoprotein B/C (mol.wt. 1.15×106). 4. These two mucoproteins have the same chemical analysis namely fucose 11.3%, galactose 26%, glucosamine 19.5%, galactosamine 8.3% and protein 13.6%. 5. Mucoprotein A contains 3.1% ester sulphate. 6. These mucoproteins are isolated without enzymic digestion and have a higher protein content than the blood-group-substance mucoproteins from proteolytic digestion of gastric mucus. Detailed amino acid analysis shows that the extra protein in the non-enzymically digested material is composed of amino acids other than serine and threonine. 7. Mucoproteins A and B/C contain respectively 130 and 9 half-cystine residues per molecule of which about 78 and 6 residues are involved in disulphide linkages. 8. Cleavage of these disulphide linkages by mercaptoethanol splits both mucoproteins into four equally sized subunits of mol.wt. 5.2×105 for mucoprotein A and 2.8×104 for mucoprotein B/C. 9. The sole N-terminal amino acid of mucoprotein A is aspartic acid, whereas mucoprotein B/C has several different N-terminal amino acid residues.  相似文献   

11.
12.
Phytase and endoglucanase enzymes are being widely used as feed additives in poultry industry. In our earlier studies, the Bacillus phytase, when expressed in Escherichia coli, was found in inclusion bodies, whereas endoglucanase was found in active soluble form. Herein, we report the development of a chimeric gene construct coding for ~73 kDa fusion protein and its over-expression in E. coli in soluble form. The novel enzyme exhibited both endoglucanase and phytase activities across broad pH (4.0–8.0) and temperature (25–75°C) ranges. As such, the bi-functional enzyme seems promising and might serve as a potential feed additive for enhanced nutrition uptake in monogastric animals.  相似文献   

13.
1. Protein synthesis has been investigated in different regions of the rat epididymis by measuring incorporation of [35S]methionine in tissue minces incubated in vitro followed by analysis of labelled proteins on polyacrylamide gels containing sodium dodecyl sulphate. Rates of synthesis were highest in the proximal cauda > distal cauda > initial segment > ductuli efferentes > corpus > distal caput > proximal caput. One protein (mol.wt. 23 000) characterized the initial segment, three proteins (mol.wts. 18 500, 19 000 and 32 000) the caput and one protein (mol.wt. 47 000) the cauda. 2. After castration, [35S]methionine incorporation in all regions of the epididymis was reduced to < 10% of that in normal animals but could be restored to control levels within 5 days by testosterone treatment. Other steroids (corticosterone, oestrogen or progesterone) were ineffective. 3. The synthesis of the 18 500, 19 000, and 32 000 mol.wt. proteins in the caput and the 47 000 mol.wt. protein in the cauda were preferentially regulated by androgens, whilst the synthesis of 23 000 and approx. 80 000 mol.wt. proteins in the initial segment was dependent upon factors present in testicular fluid. 4. The androgen-dependent and testicular fluid-dependent proteins were major components of epididymal secretion. Purification and characterization of the 18 500, 19 000, 23 000 and 32 000 mol.wt. proteins showed them to be acidic glycoproteins with a carbohydrate content of 7.6-13.2%. The 47 000 mol.wt. protein, on the other hand, is highly basic. 5. A possible role for these proteins in the acquisition of motility, fertilizing capacity and storage of spermatozoa in the epididymis is discussed.  相似文献   

14.
An extracellular β-xylosidase from a newly isolated Fusarium verticillioides (NRRL 26518) was purified to homogeneity from the culture supernatant by concentration by ultrafiltration using a 10,000 cut-off membrane, ammonium sulfate precipitation, DEAE Bio-Gel A agarose column chromatography and SP-Sephadex C-50 column chromatography. The purified β-xylosidase (specific activity, 57 U/mg protein) had a molecular weight (mol. wt.) of 94,500 and an isoelectric point at pH 7.8. The optimum temperature and pH for action of the enzyme were 65°C and 4.5, respectively. It hydrolyzes xylobiose and higher xylooligosaccharides but is inactive against xylan. The purified β-xylosidase had a K m value of 0.85 mM (p-nitrophenol-β-D-xyloside, pH 4.5, 50°C) and was competitively inhibited by xylose with a K i value of 6 mM. It did not require any metal ion for activity and stability. Journal of Industrial Microbiology & Biotechnology (2001) 27, 241–245. Received 20 May 2001/ Accepted in revised form 06 July 2001  相似文献   

15.
A new deoC gene encoding deoxyribose 5-phosphate aldolase (DERA) was identified in Yersinia sp. EA015 isolated from soil. The DERA gene had an open reading frame (ORF) of 672 base pairs encoding 223 amino acids to yield a protein of molecular mass 24.8 kDa. The amino acid sequence was 94% identical to that of DERA from Yersinia intermedia ATCC 29909. DERA was over-expressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The specific activity was 137 μmol/min/mg. The Michaelis constant (km value) of DERA was 9.1 mM. DERA was optimally active at pH 6.0 and 50 °C. DERA was tolerant to a high concentration (300 mM) of acetaldehyde.  相似文献   

16.
《Process Biochemistry》2007,42(7):1150-1154
The gene encoding a family 5 endoglucanase, cel5A, was cloned from the moderate thermophile Bacillus licheniformis strain B-41361. The primary structure of the translated cel5A gene predicts a 49 amino acid putative secretion signal and a 485 residue endoglucanase consisting of an N-terminal family 5 catalytic domain and C-terminal family 3 cellulose binding domain. The endoglucanase portion of the gene was expressed in Escherichia coli, but soluble activity in cell lysates was due to a truncated enzyme with an apparent mass of 42 kDa, the equivalent of the predicted catalytic domain. Insoluble protein renatured from inclusion bodies was protected against truncation, yielding an active holoenzyme (rCel5A) with apparent mass of 62 kDa. The recombinant rCel5A was optimally active at 65 °C and pH 6.0, but retained only 10% activity after 1 h incubation at this temperature. At 55 °C, rCel5A had a broad pH range for activity and stability, with greater than 75% relative activity from pH 4.5–7.0, and retaining greater than 80% relativity activity across the range pH 4.5–8.0 following 1 h incubation at 55 °C. It readily hydrolyzed pNPC, carboxymethylcellulose, barley β-glucan, and lichenan, but despite binding to cellulose, had only weak activity against avicel. Hydrolysis products from soluble polysaccharides included glucose, cellobiose, cellotriose, and cellotetraose. The catalytic properties, broad pH range and thermostability of the recombinant B. licheniformis endoglucanase may prove suitable for industrial applications.  相似文献   

17.
A Bacillus subtilis strain BEC-1 demonstrating high carboxymethylcellulose-degrading activity was isolated from the forest soil sample. In order to characterize the biochemical specialty of its cellulase, the endoglucanase gene egl173 was cloned from this strain and was expressed in Escherichia coli. The gene encoded a protein of 499 amino acids with a molecular weight of 64 kDa. The purified Egl173 could hydrolyze both soluble and insoluble celluloses with distinct activities. This enzyme showed the highest enzyme activity at pH 4, maintained at least 85% activity in the pH range of 3–7, displayed maximum activity at 60°C and was highly stable between 30 and 60°C. It was found that this endoglucanase was increasedly active and retained its high stability after incubation with 5 M NaCl or 3 M KCl for 24 h. Furthermore, after incubation with 10 mM of dithiothreitol, the enzyme activity was significantly enhanced (125% of the control level). In the presence of diverse metal ions (except mercury and manganese cations), organic solvents, surfactants (except SDS) and chelating agent, this enzyme kept more than 85% active. This halo-tolerant, acidophilic and highly stable endoglucanase is prospectively to be exploited as the advanced enzymatic product for diverse industrial applications.  相似文献   

18.
Isolated pellicles (cell ‘ghosts’) have been prepared from Tetrahymena thermophila strain B by two different methods. Using differential solubilization in combination with polyacrylamide gel electrophoresis and electron microscopy, we have tentatively identified the major proteins found in the surface-associated cytoskeleton. The ‘epiplasm’, a continuous layer of fibrous material found just beneath the surface membranes, appears to contain two major proteins. The smaller of the two (mol. wt 122 000 D) is believed to be present throughout the layer, whereas the larger protein (mol. wt 145 000 D) appears to be localized in the regions where ciliary basal bodies connect to the epiplasmic layer and to surface membranes. Evidence is presented which suggests that actin may also be present in this structure. Tubulin has been isolated from the cytosol of Tetrahymena and compared with cytoskeletal tubulin and porcine brain tubulin. A major protein of mol. wt 250 000 D which is found in Tetrahymena pellicles appears to be the major component of kinetodesmal fibers (striated elements which attach to the ciliary basal bodies).  相似文献   

19.
The eglA gene, encoding a thermostable endoglucanase from the hyperthermophilic archaeon Pyrococcus furiosus, was cloned and expressed in Escherichia coli. The nucleotide sequence of the gene predicts a 319-amino-acid protein with a calculated molecular mass of 35.9 kDa. The endoglucanase has a 19-amino-acid signal peptide but not cellulose-binding domain. The P. furiosus endoglucanase has significant amino acid sequence similarities, including the conserved catalytic nucleophile and proton donor, with endoglucanases from glucosyl hydrolase family 12. The purified recombinant enzyme hydrolyzed β-1,4 but not β-1,3 glucosidic linkages and had the highest specific activity on cellopentaose (degree of polymerization [DP] = 5) and cellohexaose (DP = 6) oligosaccharides. To a lesser extent, EglA also hydrolyzed shorter cellodextrins (DP < 5) as well as the amorphous portions of polysaccharides which contain only β-1,4 bonds such as carboxymethyl cellulose, microcrystalline cellulose, Whatman paper, and cotton linter. The highest specific activity toward polysaccharides occurred with mixed-linkage β-glucans such as barley β-glucan and lichenan. Kinetics studies with cellooliogsaccharides and p-nitrophenyl-cellooligosaccharides indicated that the enzyme had three glucose binding subsites (−I, −II, and −III) for the nonreducing end and two glucose binding subsites (+I and +II) for the reducing end from the scissile glycosidic linkage. The enzyme had temperature and pH optima of 100°C and 6.0, respectively; a half-life of 40 h at 95°C; and a denaturing temperature of 112°C as determined by differential scanning calorimetry. The discovery of a thermostable enzyme with this substrate specificity has implications for both the evolution of enzymes involved in polysaccharide hydrolysis and the occurrence of growth substrates in hydrothermal vent environments.  相似文献   

20.
The fourth component of complement, C4, was isolated from bovine plasma in high yield, by using simple purification techniques. The protein, like human component C4, is a beta-globulin with a mol.wt. of about 200 000 and consists of three polypeptide chains, alpha, beta and gamma, with apparent mol. wts. of 98 000, 82 000 and 32 000 respectively. The chains of C4 have been separated by methods previously used for human C4. Their amino acid compositions are very similar to those of the human component, but differences in carbohydrate distribution have been observed. The haemolytic activity of bovine C4 is totally destroyed by incubation with bovine C1s, the activated subcomponent of the first component of complement. Component C4, treated in this way, was shown to be cleaved in the alpha chain, which was decreased in mol.wt. by about 9000, corresponding to the removal of subcomponent C4a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号