首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological regulation of laccase production from Ganoderma sp. KU-Alk4, isolated in Thailand, was controlled by the initial glucose concentration in liquid culture. Different laccase isozymes were produced using different starting concentrations of glucose. With 1% glucose, two isozymes, KULac 1 and 2 were produced, while with 4% glucose, three different isozymes, KULac 3, 4 and 5, were produced. The KULacs differed in their molecular mass, ranging from 53 to 112 kDa. KULac 2 was a new laccase that had a different N-terminal amino acid sequence from other laccases previously reported. All the isozymes had optimum pH at 3.5 and were stable over the wide range of pH, 3.0–10.0, especially in alkaline pH. It is noteworthy that the activities of the four KULacs with 2,6-dimethoxyphenol were extremely high up to 90°C. They retained 100% of their activities at 60°C for 1 h.  相似文献   

2.
Laccase, an oxidoreductive enzyme, is important in bioremediation. Although marine fungi are potential sources of enzymes for industrial applications, they have been inadequately explored. The fungus MTCC 5159, isolated from decaying mangrove wood and identified as Cerrena unicolor based on the D1/D2 region of 28S and the 18S ribosomal DNA sequence, decolorized several synthetic dyes. Partially purified laccase reduced lignin content from sugarcane bagasse pulp by 36% within 24 h at 30°C. Laccase was the major lignin-degrading enzyme (~24,000 U L−1) produced when grown in low-nitrogen medium with half-strength seawater. Three laccases, Lac I, Lac II, and Lac III, of differing molecular masses were produced. Each of these, further resolved into four isozymes by anion exchange chromatography. The N-terminal amino acid sequence of the major isozyme, Lac IId showed 70–85% homology to laccases from basidiomycetes. It contained an N-linked glycan content of 17%. The optimum pH and temperature for Lac IId were 3 and 70°C, respectively, the half-life at 70°C being 90 min. The enzyme was most stable at pH 9 and retained >60% of its activity up to 180 min at 50°C and 60°C. The enzyme was not inhibited by Pb, Fe, Ni, Li, Co, and Cd at 1 mmol. This is the first report on the characterization of thermostable metal-tolerant laccase from a marine-derived fungus with a potential for industrial application.  相似文献   

3.
Extracellular laccase in cultures of Grifola frondosa grown in liquid culture on a defined medium was first detectable in the early/middle stages of primary growth, and enzyme activity continued to increase even after fungal biomass production had peaked. Laccase production was significantly increased by supplementing cultures with 100–500 μM Cu over the basal level (1.6 μM Cu) and peak levels observed at 300 μM Cu were 7-fold higher than in unsupplemented controls. Decreased laccase activity similar to levels detected in unsupplemented controls, as well as an adverse effect on fungal growth, occurred with further supplementation up to and including 0.9 mM Cu, but higher enzyme titres (2- to 16-fold compared with controls) were induced in cultures supplemented with 1–2 mM Cu2+. SDS-PAGE combined with activity staining revealed the presence of a single protein band (M r 70 kDa) exhibiting laccase activity in control culture fluids, whereas an additional distinct laccase protein band (M r 45 kDa) was observed in cultures supplemented with 1–2 mM Cu. Increased levels of extracellular laccase activity, and both laccase isozymes, were also detected in cultures of G. frondosa supplemented with ferulic, vanillic, veratric and 4-hydroxybenzoic acids, and 4-hydroxybenzaldehyde. Using 2,2′-azino-bis(ethylbenzothiazoline-6-sulfonate) (ABTS) as substrate, the optimal temperature and pH values for laccase activity were 65°C and pH 2.2, respectively, and the enzyme was relatively heat stable. In solid-state cultures of G. frondosa grown under conditions adopted for industrial-scale mushroom production, extracellular laccase levels increased during the substrate colonization phase, peaked when the substrate was fully colonized, and then decreased sharply during fruit body development.  相似文献   

4.
We previously showed that eight laccase genes (Lac 1Lac 8) are preferentially expressed in differentiating xylem and are associated with lignification in loblolly pine (Pinus taeda) [Sato et al. (2001) J Plant Res 114:147–155]. In this study we generated transgenic tobacco suspension cell cultures that express the pine Lac 1 and Lac 2 proteins, and characterized the abilities of these proteins to oxidize monolignols. Lac 1 and Lac 2 enzymatic activities were detected only in the cell walls of transgenic tobacco cells, and could be extracted with high salt. The optimum pH for laccase activity with coniferyl alcohol as substrate was 5.0 for Lac 1 and between 5.0 and 6.0 for Lac 2. The activities of Lac 1 and Lac 2 increased as the concentration of CuSO4 in the reaction mixtures increased in the range from 1 to 100 μM. Both enzymes were able to oxidize coniferyl alcohol and to produce dimers of coniferyl alcohol. These results are consistent with the hypothesis that Lac 1 and Lac 2 are involved in lignification in differentiating xylem of loblolly pine.  相似文献   

5.
Summary Extracellular laccase in cultures of Grifola frondosa grown in liquid culture on a defined medium was first detectable in the early/middle stages of primary growth, and enzyme activity continued to increase even after fungal biomass production had peaked. Laccase production was significantly increased by supplementing cultures with 100–500 (M Cu over the basal level (1.6 mM Cu) and peak levels observed at 300 mM Cu were ∼ ∼7-fold higher than in unsupplemented controls. Decreased laccase activity similar to levels detected in unsupplemented controls, as well as an adverse effect on fungal growth, occurred with further supplementation up to and including 0.9 mM Cu, but higher enzyme titres (2- to 16-fold compared with controls) were induced in cultures supplemented with 1–2 mM Cu2+. SDS-PAGE combined with activity staining revealed the presence of a single protein band (M r ∼ ∼70 kDa) exhibiting laccase activity in control culture fluids, whereas an additional distinct second laccase protein band (M r␣∼ ∼45 kDa) was observed in cultures supplemented with 1–2 mM Cu. Increased levels of extracellular laccase activity, and both laccase isozymes, were also detected in cultures of G. frondosa supplemented with ferulic, vanillic, veratric and 4-hydroxybenzoic acids, and 4-hydroxybenzaldehyde. The optimal temperature and pH values for laccase activity were 65 °C and pH 2.2 (using 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) {ABTS} as substrate), respectively, and the enzyme was relatively heat stable. In solid-state cultures of G. frondosa grown under conditions adopted for industrial-scale mushroom production, extracellular laccase levels increased during the substrate colonization phase, peaked when the substrate was fully colonized, and then decreased sharply during fruit body development.  相似文献   

6.
Two isoforms of laccase produced from the culture supernatant of Pycnoporus sanguineus were partially purified by phenyl-Sepharose chromatography. Molecular masses of the enzymes were 80 kDa (Lac I) and 68 kDa (Lac II). Optimum activity of Lac I was at pH 4.8 and 30 °C, and Lac II was at pH 4.2 and 50 °C over 5 min reaction. The Km values of enzymes toward syringaldazine were 10 μm (Lac I) and 8 μm (Lac II). Sodium azide inhibited Lac I (85%) and Lac II (75%) activities. Revisions requested 30 November 2005; Revisions received 26 January 2006  相似文献   

7.
Lac591, a gene encoding a novel multicopper oxidase with laccase activity, was identified through activity-based functional screening of a metagenomic library from mangrove soil. Sequence analysis revealed that lac591 encodes a protein of 500 amino acids with a predicted molecular mass of 57.4 kDa. Lac591 was overexpressed heterologously as soluble active enzyme in Escherichia coli and purified, giving rise to 380 mg of purified enzyme from 1 l induced culture, which is the highest expression report for bacterial laccase genes so far. Furthermore, the recombinant enzyme demonstrated activity toward classical laccase substrates syringaldazine (SGZ), guaiacol, and 2, 6-dimethoxyphenol (2, 6-DMP). The purified Lac591 exhibited maximal activity at 55°C and pH 7.5 with guaiacol as substrate and was found to be stable in the pH range of 7.0–10.0. The substrate specificity on different substrates was studied with the purified enzyme, and the optimal substrates were in the order of 2, 6-DMP > catechol > α-naphthol > guaiacol > SGZ > 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). The alkaline activity and highly soluble expression of Lac591 make it a good candidate of laccases in industrial applications for which classical laccases are unsuitable, such as biobleaching of paper pulp and dyestuffs processing.  相似文献   

8.
Laccases are blue multicopper oxidases with potential applications in environmental and industrial biotechnology. In this study, a new bacterial laccase gene of 1.32 kb was obtained from a marine microbial metagenome of the South China Sea by using a sequence screening strategy. The protein (named as Lac15) of 439 amino acids encoded by the gene contains three conserved Cu2+-binding domains, but shares less than 40% of sequence identities with all of the bacterial multicopper oxidases characterized. Lac15, recombinantly expressed in Escherichia coli, showed high activity towards syringaldazine at pH 6.5–9.0 with an optimum pH of 7.5 and with the highest activity occurring at 45 °C. Lac15 was stable at pH ranging from 5.5 to 9.0 and at temperatures from 15 to 45 °C. Distinguished from fungal laccases, the activity of Lac15 was enhanced twofold by chloride at concentrations lower than 700 mM, and kept the original level even at 1,000 mM chloride. Furthermore, Lac15 showed an ability to decolorize several industrial dyes of reactive azo class under alkalescent conditions. The properties of alkalescence-dependent activity, high chloride tolerance, and dye decolorization ability make the new laccase Lac15 an alternative for specific industrial applications.  相似文献   

9.
Two isozymes of laccase were obtained from an induced liquid culture of Marasmius quercophilus with p-hydroxybenzoic acid as the inducer. Both the constitutive and the induced isozyme have a molecular mass of 60 kDa as determined by polyacrylamide gel electrophoresis. Using isoelectric focusing, we found three isozymes with the constitutive enzyme (pI 4, 4.2, 4.4) and four of the induced form (pI 4.75, 4.85, 4.95, 5.1). We observed certain differences between these two isozymes; the specific activity of the induced isozyme was twice as high, and two optimum pH levels (5 and 6) were observed with the induced isozyme (only one, pH 5, for the constitutive isozyme). However, both of these enzymes have the same thermal stability and the same temperature for their highest activity (80 degrees C). Furthermore, the reactivity of both these enzymes with aromatic compounds was similar. The use of mediators extended the oxidized substrate range of the laccases studied. Various products of degradation were observed, depending on the mediator used. When laccase was used alone, the decrease of the signal corresponding to the aromatic cycle, without any formations of other peaks at different wavelengths, suggested polymerisation of aromatic compounds.  相似文献   

10.
Increasing demand for efficient and environmentally benign oxidation technologies has resulted in a focus on the use of oxidoreductases. Laccases and tyrosinases, which utilize molecular oxygen and produce water as by-product, are particularly attractive. Simultaneous production of laccase and tyrosinase was studied in Neurospora crassa FGSC #321 as the fungal strain which has the ability to produce tyrosinase intracellularly while producing laccase extracellularly. Using one-variable-at-a-time experiments and a Taguchi orthogonal L9 array demonstrated that a Vogel minimal medium containing 2.5% sucrose at pH 6.5 and 25?°C with no agitation or oxygen purging were the optimum conditions for N. crassa FGSC #321 growth. Conditions were adjusted to obtain the highest laccase and tyrosinase production. Results indicate that the control mechanisms for the production of both enzymes in N. crassa FGSC #321 are similar but not necessarily identical. Results revealed that transferring the harvested cells from the growth medium into the phosphate buffer (pH 6.8, 0.1M) containing cycloheximide (2?μM) and fluorouracil (2?mM) and increasing the temperature to 30?°C were the best conditions for simultaneous production of laccase and tyrosinase (1278 and 410?U/g of biomass, respectively). Nonetheless, starvation at 35?°C is proposed as the most cost-effective means for inducing laccase. The N. crassa laccase was characterized by using its molecular weight, pI value, optimal pH and temperature and stability.  相似文献   

11.
Six different extracellular laccase isoforms were identified in submerged cultures of the commercially important edible mushroom, Coprinus comatus. Although laccase activity (~55 IU/L) was readily detectable in unsupplemented control cultures containing 1.6 μM Cu2+ after 22-day incubation, mean enzyme levels (~150–185 IU/L) were 2.7–3.4-fold higher in cultures supplemented with 0.5–3.0 mM Cu2+. Laccase production was also stimulated by Mn supplementation over the range 0.05–0.8 mM Mn2+, and the peak value of ~225 IU/L recorded after 22 days in cultures containing 0.8 mM added Mn2+ was 4.5-fold higher compared with unsupplemented controls. Of 12 aromatic compounds tested for their effect on laccase isozyme production by C. comatus, highest laccase levels (~188 IU/L), equivalent to a 4.4-fold increase compared with unsupplemented controls (~43 IU/L), were recorded after 22 days in cultures supplemented with 3.0 mM caffeic acid. Other aromatic compounds tested all stimulated laccase production, with peak enzyme levels 1.3–3.3-fold higher compared with unsupplemented controls. Extracellular laccase levels in cultures supplemented with optimal concentrations of Mn2+ and caffeic acid together were 38% and 15% lower, respectively, compared with cultures containing the separate supplements. Lac1 was the most abundant laccase isoform produced under all the conditions tested, but marked differences were observed in the production patterns of Lac2–Lac6.  相似文献   

12.
Constant laccase activities were detected in culture supernatant of newly isolated basidiomycete Trametes gallica. Tryptone and glucose have great effects on the production of laccase. Two laccase isoenzymes (Lac I and Lac II) produced by T. gallica were purified to homogeneity (51- and 50-fold, respectively) by gel filtration chromatography, anion exchange chromatography, and improved native PAGE, with an overall yield of 24.8%. Lac I and Lac II from this fungus are glycoproteins with 3.6% and 4% carbohydrate content, the same molecular masses (by SDS-PAGE) of 60 kDa, and the pI of 3.1 and 3.0, respectively. Native gel electrophoresis indicates that the two laccases have different migration ratios. Lac I and Lac II have the same optimal pH of 3.0 on 2,6-dimethoxyphenol (DMP), pH 2.2 on 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and of pH 4.0 on guaiacol. The highest rate of ABTS oxidation for both laccases was reached at 70 degrees C. Both laccases are stable from pH 6 to 9, retaining 88-90% activity after 24 hr incubation, and show good stability when incubated at temperatures lower than 40 degrees C. The Km values of Lac I for ABTS, DMP, and guaiacol are 0.118 x 10(-2), 0.420, and 0.405 mM, respectively; the Km values of Lac II for ABTS, DMP, and guaiacol are 0.086 x 10(-2), 0.41, and 0.40 mM, respectively. Their N-terminal sequences are determined and show strong similarity with those from other basidiomycetes. Graphite-furnace atomic absorption analysis revealed that both laccases have four copper atoms per protein molecule, but they have no type I copper signal at around 600 nm and a type III copper signal near 330 nm. Cyanide, azide, and halides completely inhibit the enzyme activity, whereas EDTA has less inhibition.  相似文献   

13.
The white rot fungus Pycnoporus sanguineus produced high amount of laccase in the basal liquid medium without induction. Laccase was purified using ultrafiltration, anion-exchange chromatography, and gel filtration. The molecular weight of the purified laccase was estimated as 61.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme oxidized typical substrates of laccases including 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate), 2,6-dimethoxyphenol, and syringaldazine. The optimum pH and temperature for the purified laccase were 3.0 and 65°C, respectively. The enzyme was stable up to 40°C, and high laccase activity was maintained at pH 2.0–5.0. Sodium azide, l-cysteine, and dithiothreitol strongly inhibited the laccase activity. The purified enzyme efficiently decolorized Remazol Brilliant Blue R in the absence of added redox mediators. The high production of P. sanguineus laccase as well as its decolorization ability demonstrated its potential applications in dye decolorization.  相似文献   

14.
A β-D-xylosidase was purified from cultures of a thermotolerant strain of Aspergillus phoenicis grown on xylan at 45°C. The enzyme was purified to homogeneity by chromatography on DEAE-cellulose and Sephadex G-100. The purified enzyme was a monomer of molecular mass 132 kDa by gel filtration and SDS-PAGE. Treatment with endoglycosidase H resulted in a protein with a molecular mass of 104 kDa. The enzyme was a glycoprotein with 43.5% carbohydrate content and exhibited a pI of 3.7. Optima of temperature and pH were 75°C and 4.0–4.5, respectively. The activity was stable at 60°C and had a K m of 2.36 mM for p-nitrophenyl-β-D-xylopiranoside. The enzyme did not exhibit xylanase, cellulase, galactosidase or arabinosidase activities. The purified enzyme was active against natural substrates, such as xylobiose and xylotriose. Journal of Industrial Microbiology & Biotechnology (2001) 26, 156–160. Received 23 June 2000/ Accepted in revised form 29 September 2000  相似文献   

15.
The white-rot basidiomycete Physisporinus rivulosus strain T241i is highly selective for degradation of softwood lignin, which makes this fungus suitable for biopulping. In order to promote laccase production, P. rivulosus was cultivated in nutrient-nitrogen sufficient liquid media containing either charcoal or spruce sawdust as supplements. Two laccases with distinct pI values, Lac-3.5 and Lac-4.8, were purified from peptone-spruce sawdust-charcoal cultures of P. rivulosus. Both laccases showed thermal stability at up to 60°C. Lac-4.8 was thermally activated at 50°C. Surprisingly, both laccases displayed atypically low pH optima (pH 3.0–3.5) in oxidation of the commonly used laccase substrates syringaldazine (4-hydroxy-3,5-dimethoxybenzaldehyde azine), 2,6-dimethoxyphenol and guaiacol (2-methoxyphenol). Steady-state kinetic measurements pointed to unusually low affinity to guaiacol at low pH, whereas the kinetic constants for the methoxyphenols and ABTS were within the ranges reported for other fungal laccases. The combination of thermotolerance with low pH optima for methoxylated phenol substrates suggests that the two P. rivulosus T241i laccases possess potential for use in biotechnological applications.  相似文献   

16.
Whey proteins (WP) gelation process with addition of Arabic gum (AG) was studied. Two different driving processes were employed to induce gelation: (1) heating of 12% whey protein isolate (WPI) solutions (w/w) or (2) acidification of previous thermal denatured WPI solutions (5% w/w) with glucono-δ-lactone (GDL). Protein concentrations were different because they were minimal to form gel in these two processes, but denaturation conditions were the same (90 °C/30 min). Water-holding capacity and mechanical properties of the gels were evaluated. The BST equation was used to evaluate the nonlinear part of the stress–strain data. Cold-set gels were weaker than heat-set gels at the pH range near the isoelectric point (pI) of the main whey proteins, but heated gels were more deformable (did not exhibit rupture point) and showed greater elasticity modulus. However, gels formed by heating far from the pI (pH 6.7 or 3.5) showed more fragile structure, indicating that, in these mixed gels, there are prevailing biopolymers interactions. Cold-set and heat-set gels at pH near or below the WP pI showed strain-weakening behavior, but heated gels at neutral pH showed strong strain-hardening behavior. Such results suggest that differences in stress–strain curve at the nonlinear part of the data could be correlated to structure particularities obtained from different gelation processes.  相似文献   

17.
An inducible form of extracellular laccase (EC 1.14.18.1) was isolated from the basidiomyceteCoriolus hirsutus. The induction was performed with 0.11 μM syringaldazine, a substrate of laccase. The inducible form of the enzyme consisted of two isoforms, laccase II and laccase 12, whose molecular weights were 69 ±2 and 67 ±2 kDa, respectively. The isoelectric points of these isoenzymes were found to be 3.5 and 4.2, respectively. The optimum pH range for both laccases was 4.4–4.6, and the optimum temperature was 50°C. The thermal stability of these isoenzymes was examined, andK m values for the substrates syringaldazine and pyrocatechol were determined. Our biochemical and physicochemical studies demonstrated that inducible laccase isoforms differed from constitutive forms in molecular weight, IEP,K m, and thermal stability. However, their optimum pH ranges and temperatures were identical.  相似文献   

18.
In vitro transgenic hairy root cultures provide a rapid system for physiological, biochemical studies and screening of plants for their phytoremediation potential. The hairy root cultures of Brassica juncea L. showed 92% decolorization of Methyl orange within 4 days. Out of the different redox mediators that were used to achieve enhanced decolorization, 2, 2′-Azinobis, 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was found to be the most efficient. Laccase activity of 4.5 U mg−1 of protein was observed in hairy root cultures of Brassica juncea L., after the decolorization of Methyl orange. Intracellular laccase produced by B. juncea root cultures grown in MS basal medium was purified up to 2.0 fold with 6.62 U mg−1 specific activity using anion-exchange chromatography. Molecular weight of the purified laccase was estimated to be 148 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme efficiently oxidized ABTS which was also required for oxidation of the other tested substrates. The pH and temperature optimum for laccase activity were 4.0 and 40°C, respectively. The purified enzyme was stable up to 50°C and was stable in the pH range of 4.0–6.0. Laccase activity was strongly inhibited by sodium azide, EDTA, dithiothreitol and l-cysteine. The purified enzyme decolorized various textile dyes in the presence of ABTS as an efficient redox mediator. These findings contribute to a better understanding of the enzymatic process involved in phytoremediation of textile dyes by using hairy roots.  相似文献   

19.
Alkaline protease production by a newly isolated Bacillus species from laundry soil was studied for detergent biocompatibility. From its morphological and nucleotide sequence (about 1.5 kb) of its 16S rDNA it was identified as Bacillus species with similarity to Bacillus species Y (Gen Bank entry: ABO 55095), and close homology with Bacillus cohnii YN-2000 (Gen Bank entry: ABO23412). Partial purification of the enzyme by ammonium sulfate (50–70% saturation) yielded 8-fold purity. Casein zymography and Sodium dodecylsulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) of the partially purified enzyme revealed two isozymes of molecular sizes approximately 66 kDa and 18 kDa, respectively. The enzyme was most active at pH 12 and 50°C. At pH 12 the enzyme was stable for 5 h and retained 60% activity. The enzyme retained 44% activity at 50°C up to 2 h. The protease showed good hydrolysis specificity with different substrates tested. The presence of Mn2+, Co2+ and ethylenediaminetetracetic acid (EDTA) showed profound increase in protease activity. The protease of Bacillus species Y showed excellent stability and compatibility with three locally available detergents (Kite, Tide and Aerial) up to 3 h retaining almost 70–80% activity and 10–20% activity at room temperature (30°C) and 50°C, respectively, indicating the potential role of this enzyme for detergent application.  相似文献   

20.
A laccase was purified from Trametes hirsuta. This laccase was classified as a “white” or “yellow” laccase. pH 2.4 was optimal for the oxidation of ABTS and pH 2.5 for DMP. DMP oxidation was optimal at 85°C. The half-life of this laccase was 70 min at 75°C, and 5 h at 65°C. Non-phenolic dyes, such as Methyl Red, were oxidized by purified laccase without mediators. The enzyme was not inhibited by Cu2+, Mn2+, or EDTA. These are atypical laccase characteristics that make it a good candidate for theoretical and applied research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号