首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We mapped the locations of the genes encoding the slow skeletal muscle, fast skeletal muscle, and cardiac isoforms of troponin I (Tnni) in the mouse genome by interspecific hybrid backcross analysis of species-specific (C57BL/6 vs Mus spretus) restriction fragment length polymorphisms (RFLPs). The slow skeletal muscle troponin I locus (Tnni1) mapped to Chromosome (Chr) 1. The fast skeletal muscle troponin I locus (Tnni2), mapped to Chr 7, approximately 70 cM from the centromere. The cardiac troponin I locus (Tnni3) also mapped to Chr 7, approximately 5–10 cM from the centromere and unlinked to the fast skeletal muscle troponin I locus. Thus, the troponin I gene family is dispersed in the mouse genome. Received: 10 May 1995 / Accepted: 1 September 1995  相似文献   

2.
We report the mapping of the human and mouse genes encoding SEK1 (SAPK/ERK kinase-1), a newly identified protein kinase that is a potent physiological activator of the stress-activated protein kinases. The human SERK1 gene was assigned to human chromosome 17 using genomic DNAs from human–rodent somatic cell hybrid lines. A specific human PCR product was observed solely in the somatic cell line containing human chromosome 17. The mouseSerk1gene was mapped to chromosome 11, closely linked toD11Mit4,using genomic DNAs from a (C57BL/6J ×Mus spretus)F1×M. spretusbackcross.  相似文献   

3.
We have mapped the gene encoding the murine RYK growth factor receptor protein tyrosine kinase by genetic linkage analysis with recombinant inbred strains of mouse. Two distinct Ryk loci (Ryk-1 and Ryk-2) were identified. Ryk-1 mapped to Chromosome (Chr) 9, whereas Ryk-2 mapped to Chr 12. A similar arrangement of RYK-related loci was previously determined in the human. Synteny has already been established between murine Chr 9 in the region of Ryk-1, and human chromosome 3q11–12, the location of the human RYK-1 gene. However, the Ryk-2/RYK-2 loci on murine Chr 12 and human chr 17p13.3 define a new region of synteny.  相似文献   

4.
The genes for insulin-like growth factor 1 receptor (IGF1R), aggrecan (AGC1), β2-microglobulin (B2M), and an H6-related gene have been mapped to a single chicken microchromosome by genetic linkage analysis. In addition, a second H6-related gene was mapped to chicken macrochromosome 3. The Igf1r and Agc1 loci are syntenic on mouse Chr 7, together with Hmx3, an H6-like locus. This suggests that the H6-related locus, which maps to the chicken microchromosome in this study, is the homolog of mouse Hmx3. The IGF1R, AGC1, and B2M loci are located on human Chr 15, probably in the same order as found for this chicken microchromosome. This conserved segment, however, is not entirely conserved in the mouse and is split between Chr 7 (Igf1r-Agc) and 2 (B2m). This comparison also predicts that the HMX3 locus may map to the short arm of human Chr 15. The conserved segment defined by the IGF1R–AGC1–HMX3—B2M loci is approximately 21–35 Mb in length and probably covers the entire chicken microchromosome. These results suggest that a segment of human Chr 15 has been conserved as a chicken microchromosome. The significance of this result is discussed with reference to the evolution of the avian and mammalian genomes. Received: 7 December 1996 / Accepted: 7 February 1997  相似文献   

5.
We have determined the chromosomal locations of the two cholecystokinin (CCK) receptor genes in the mouse. Genetic localization utilized an interspecific backcross panel formed from the cross (C57BL/6J x Mus spretus) F1 x Mus spretus. Genomic DNAs from 94 individuals in the backcross were analyzed by Southern hybridization with rat CCKA and CCKB receptor cDNA probes. Unique map positions were determined by haplotype analysis with 650 previously mapped loci in the mouse backcross. The CCKA receptor gene (Cckar) mapped to mouse Chromosome (Chr) 5, in tight linkage with the DNA marker D5Bir8. The CCKB receptor gene (Cckbr) mapped to mouse Chr 7, tightly linked to the -hemoglobin locus (Hbb). This localization places Cckbr in the same region as the mouse obesity mutation tubby (tub), which also maps near Hbb (2.4±1.4 cM). Since CCK can function as a satiety factor when administered to rodents, localization of Cckbr near the tub mutation identifies this receptor as a possible candidate gene for this obesity mutation.  相似文献   

6.
We present a linkage map of intracisternal A-particle (IAP) proviral loci. The IAP family consists of 2000 endogenous proviral elements that are widely dispersed in the mouse genome. The map was constructed by using an interspecific backcross and markers defined by oligonucleotide probes specific for subclasses of expressed IAP elements. In genomic DNA from C57BL/6J mouse, these probes each detected from 12 to 44 HindIII restriction fragments that represent junctions between proviral and 5-flanking DNA. The fragments have characteristic strain distribution patterns (SDPs) that are particularly polymorphic in the DNAs of C57BL/6J and Mus spretus mice used for the backcross. IAP loci were placed on the map by comparison of their distribution patterns with those of known genetic markers in the backcross. The map includes 51 IAP loci that have not been previously mapped and 23 IAP proviruses that had been previously mapped in recombinant inbred (RI) strains. Comparable map positions were obtained with the IAP markers in the interspecific backcross and the RI strains. The mapped IAP loci were widely dispersed on the X Chromosome (Chr) and all of the autosomes except Chrs 9 and 19, providing useful genetic markers for linkage studies.  相似文献   

7.
TheLpslocus on mouse chromosome 4 controls host responsiveness to lipopolysaccharide, a major component of the outer membrane of Gram-negative bacteria. The C3H/HeJ inbred mouse strain is characterized by a mutantLpsallele (Lpsd) that renders it hyporesponsive to LPS and naturally tolerant of its lethal effects. To identify theLpsgene by a positional cloning strategy, we have generated a high-resolution linkage map of the chromosomal region surrounding this locus. We have analyzed a total of 1604 backcross mice from a preexisting interspecific backcross panel of 259 (Mus spretus× C57BL/6J)F1 × C57BL/6J and two novel panels of 597 (DBA/2J × C3H/HeJ)F1 × C3H/HeJ and 748 (C57BL/6J × C3H/HeJ)F1 × C3H/HeJ segregating atLps.A total of 50 DNA markers have been mapped in a 11.8-cM span overlapping theLpslocus. This positions theLpslocus within a 1.1-cM interval, flanked proximally by a large cluster of markers, including three known genes (Cd30l, Hxb,andAmbp), and distally by two microsatellite markers (D4Mit7/D4Mit178). The localization of theLpslocus is several centimorgans proximal to that previously assigned.  相似文献   

8.
We present here the genetic mapping of two novel loci, D16Ros1 and D16Ros2, to mouse Chromosome (Chr) 16. The probes for these loci were genomic framents isolated from the chakragati mouse, a behavioural mutant resulting from insertional mutagenesis during the course of making transgenic mice. D16Ros1 and D16Ros2 were first mapped by recombinant inbred (RI) strain analysis and subsequently by the analysis of 145 progeny of two interspecific backcrosses between Mus domesticus and Mus spretus. These progeny had been typed for the centromere and this allowed mapping of D16Ros1 and D16Ros2 relative to the centromere. The other markers included in this study were Prm-1, Gap43 and Sod-1. The genetic map generated spanned 47.5 cM from the centromere to Sod-1, the most distal marker mapped here. The linkage data presented here should prove useful in mapping other loci relative to the centromere of Chr 16.  相似文献   

9.
-L-iduronidase (IDUA), which when deficient causes mucopolysaccharidosis type I, is located near the Huntington disease locus (HD) on human Chromosome (Chr) 4p16.3, approximately 106 base pairs (bp) from the telomere. As part of our continuing efforts to define a detailed comparative map for this chromosomal segment in mice and humans, we have used an interspecific backcross between C57BL/6J and an inbred strain derived from Mus spretus to map Idua, the mouse homolog of IDUA. We also mapped the mouse homolog of D4S115, an anonymous locus approximately 250 kb proximal to IDUA. As expected, both Idua and D4S115h are located on the proximal portion of mouse Chr5 near homologs for other loci on human Chr 4p. Comparison of gene order in mice and humans demonstrates, however, that a chromosomal rearrangement within this conserved synteny has occurred since divergence of lineages leading to mice and humans.  相似文献   

10.
The porcine genes encoding the immunoglobulin gamma heavy chain (IGHG), cAMP-dependent protein kinase catalytic beta subunit (PRKACB), and transition protein 2 (TNP2) were mapped to Chromosomes (Chrs) 7 q25–q26, 6q31–q33, and 3p13-cent, respectively, by in situ hybridization. Localization of the IGHG gene confirms the assignment of linkage group III to Chr 7. Our results show that the IGHG locus in pigs, similar to the situation in other mammalian species, viz. humans, mouse, cattle, and river buffaloes, is located on the terminal region of the chromosome. The assignment of the PRKACB gene extends the homology observed between porcine Chr 6q and human Chr 1p. Mapping of the TNP2 gene provides the first marker assigned to the p arm of Chr 3 in pigs. The present study contributes to the development of the physical gene map in pigs and also bears significance in terms of comparative gene mapping.  相似文献   

11.
cDNA clones encoding zinc finger motifs were isolated by screening human placenta and T-cell (Peer) cDNA libraries with zinc finger (ZNF) consensus sequences. Unique cDNA clones were mapped in the human genome by rodent-human somatic cell hybrid analysis and in some cases in situ chromosomal hybridization. ZNF 80 mapped to 3p12-3qter, ZNF 7 was previously mapped to 8q24 and is here shown by in situ hybridization and use of appropriate hybrids to map telomeric to the MYC locus. ZNF 79 mapped to 9q34 centromeric to the ABL gene and between a constitutional chromosomal translocation on the centromeric side and the CML specific ABL translocation on the telomeric side. ZNF77 mapped to 19p while ZNF 78L1 (pT3) mapped to 19q. Chromosome 19 carries many ZNF loci and other genes with zinc finger encoding motifs; the pT3 clone additionally detected a locus designated ZNF 78L2, which mapped to chromosome region 1p, most likely in the region 1p32 where the MYCL and JUN loci map.  相似文献   

12.
An interspecific backross was used to define a high resolution linkage map of mouse Chromosome (Chr) 1 and to analyze the segregation of the generalized lymphoproliferative disease (gld) mutation. Mice homozygous for gld have multiple features of autoimmune disease. Analysis of up to 428 progeny from the backcross [(C3H/HeJ-gld x Mus spretus)F1 x C3H/HeJ-gld] established a map that spans 77.6 cM and includes 56 markers distributed over 34 ordered genetic loci. The gld mutation was mapped to a less than 1 cM segment on distal mouse Chr 1 using 357 gld phenotype-positive backcross mice. A second backcross, between the laboratory strains C57BL/6J and SWR/J, was examined to compare recombination frequency between selected markers on mouse Chr 1. Significant differences in crossover frequency were demonstrated between the interspecific backcross and the inbred laboratory cross for the entire interval studied. Sex difference in meiotic crossover frequency was also significant in the laboratory mouse cross. Two linkage groups known to be conserved between segments of mouse Chr 1 and the long arm of human Chrs 1 and 2 where further defined and a new conserved linkage group was identified that includes markers of distal mouse Chr 1 and human Chr 1, bands q32 to q42.  相似文献   

13.
Linkages among three biochemical loci (Acol, Ahd2, and Mup1) and four microsatellite loci (A8, Glut1, Jun, and Pnd) were determined to construct a linkage map of rat Chromosome (Chr) 5. Consequently, an extensive linkage map on rat Chr 5 was constructed with the following gene order: A8-Aco1-Mup1-Jun-Glut1-Ahd2-Pnd. In this linkage map, the Jun and A8 loci are newly placed, and two previously reported linkage groups on rat Chr 5 are connected by the Jun locus. The linkage map indicates an extensive linkage conservation between the loci on rat Chr 5 and those on mouse Chr 4.  相似文献   

14.
The X Chromosome (Chr) genes for phosphoribosylpyrophosphate synthetases 1 and 2, Prps1 and Prps2, were mapped on the mouse X Chr with interspecific backcrosses between C57BL/6 (B6) and M. spretus (S). Southern analysis showed that Prps1 mapped between Plp and DXWas31, a mouse X Chr region that is homologous to Xq21-24 on the human X Chr while Prps2 mapped between DXWas31 and Amg, a region that is homologous to the map position of PRPS2 on Xp22 of the human X Chr. Additionally, other restriction fragments highlighted by PRS II showed autosomal segregation. In situ hybridization and FISH analysis of metaphase chromosome spreads prepared from lymphocytes of B6 or S male mice confirmed that there were in fact two different locations on the X Chr, X F1-2 and X F2-3 for Prps1 and 2 respectively, as well as two autosomal sites for Prps-like genes.  相似文献   

15.
ALR mice are closely related to type-1 diabetes mellitus (T1DM)-prone NOD mice. The ALR genome confers systemically elevated free radical defenses, dominantly protecting their pancreatic islets from free radical generating toxins, cytotoxic cytokines, and diabetogenic T cells. The ALR major histocompatibility complex (MHC) (H2gx haplotype) is largely, but not completely identical with the NOD H2g7 haplotype, sharing alleles from H2-K through the class II and distally into the class III region. This same H2gx haplotype in the related CTS strain was linked to the Idd16 resistance locus. In the present study, ALR was outcrossed to NOD to fine map the Idd16 locus and establish chromosomal regions carrying other ALR non-MHC-linked resistance loci. To this end, 120 (NOD×ALR)×NOD backcross progeny females were monitored for T1DM and genetic linkage analysis was performed on all progeny using 88 markers covering all chromosomes. Glucosuria or end-stage insulitis developed in 32 females, while 88 remained both aglucosuria and insulitis free. Three ALR-derived resistance loci segregated. As expected, one mapped to Chromosome 17, with peak linkage mapping just proximal to H2-K. A novel resistance locus mapped to Chr 8. A pairwise scan for interactions detected a significant interaction between the loci on Chr 8 and Chr 17. On Chr 3, resistance segregated with a marker between previously described Idd loci and coinciding with an independently mapped locus conferring a suppressed superoxide burst by ALR neutrophils (Susp). These results indicate that the Idd16 resistance allele, defined originally by linkage to the H2gx haplotype of CTS, is immediately proximal to H2-K. Two additional ALR-contributed resistance loci may be ALR-specific and contribute to this strain's ability to dissipate free-radical stress.  相似文献   

16.
Urogenital syndrome (us) is a recessive mutation in mice characterized primarily by abnormalities of the axial skeleton and urogenital organs. We established linkage of us with the centromeric end of Chromosome (Chr) 2, using the Robertsonian Chr Rb(2.8)2Lub. Analysis of progeny from crosses using the Chr 2 markers Danforth's short tail (Sd) and ulnaless (Ul) positioned us near two loci that have recently been mapped by RFLPs, nonerythroid -spectrin (Spna-2) and the paired-box-containing-gene-8 (Pax-8). The position of us relative to these loci was established by analysis of progeny from interspecific backcrosses between the us strains and Mus spretus. The estimated map distances and most likely gene order are centromere-Pax-8-2.1±1.2-us-0.7±0.7-Spna-2; however, the reverse order cannot be ruled out. Our data make it unlikely that us is a mutation in either Spna-2 or Pax-8. Spna-2 is close enough to us, however, to be a useful marker for positional cloning of the us gene. The human mutation Nail-patella-syndrome (NPS1) maps to the region of human Chr 9 (9q34) that is homologous to the us region of mouse Chr 2. Phenotypic similarities between the two syndromes suggest the possibility that they are caused by mutations at homologous loci.  相似文献   

17.
Glycoprotein 330 (Gp330) is a member of the low-density lipoprotein receptor gene family that is expressed in the kidney. We have mapped the Gp330 gene to mouse chromosome 2, 4.5 cM proximal to Acra, in an interspecific backcross of (C57BL/6J × Mus spretus) F1 × C57BL/6J.  相似文献   

18.
Sheep x hamster cell hybrids containing sheep metacentric Chromosome (Chr) 2 were produced by fusing blood leukocytes from normal sheep with hamster auxotrophic Ade F-minus mutants. Cell clones that were isocitrate dehydrogenase 1 (IDH1) positive were cytogenetically characterized, confirming that they contained sheep Chr 2. The following loci were newly assigned by Southern hybridization to sheep Chr 2: lipoprotein lipase (LPL), glycoprotein-4-beta galactosyltransferase 2 (GGTB2), neurofilament light polypeptide (68 kDa; NEFL), surfactant-associated protein 2 (SFTP2), lymphocyte-specific protein tyrosine kinase (LCK), and nebulin (NEB). These new assignments and the in situ localization of gelsolin (GSN) to sheep Chr 2pter-p24 are consistent with the predicted homology of cattle Chr 8 (U18) with sheep Chr 2p, and of cattle Chr 2 (U17) with sheep 2q. In addition, the assignment by cell hybrid analysis of loci previously mapped to Chr 2 in sheep, viz., cholinergic receptor, nicotinic, delta polypeptide (CHRND), collagen type III alpha 1 (COL3A1), fibronectin 1 (FN1), isocitrate dehydrogenase (IDH1), and villin 1 (VIL1), confirmed the localization of sheep syntenic group U11 to this chromosome. By nutritional selection and complementation of the hamster auxotrophic Ade F mutation, the multifunctional enzyme locus phosphoribosylaminoimidazolecarboxamide formyltransferase (AICAR transformylase)/IMP cyclohydrolase (inosinicase) (provisionally given the symbol PRACFT) has also been newly assigned to sheep Chr 2. This report significantly extends the number of loci physically mapped to sheep Chr 2 and confirms its close homology with cattle Chrs 2 and 8.  相似文献   

19.
A family of DNA sequences homologous to the mRNA encoding ornithine decarboxylase (ODC) and comprising 12 members in the mouse genome has been analyzed genetically. The inheritance of variant DNA restriction fragments detected by ODC cDNA probes on Southern blots of DNA from inbred strain mice was determined in six sets of recombinant inbred (RI) mouse strains. The distributions of these variations among the RI strains were then compared with the RI strain distribution patterns (SDPs) of previously mapped loci. This allowed the identification of nine independent ODC-related loci, of which eight could be localized to specific regions of the mouse genome: Odc-rs1 near Lamb2 on Chromosome (Chr) 1; Odc-rs2 near Psp on Chr 2; Odc-rs5, a complex locus comprising at least 5–7 copies of the ODC sequence, associated with Igk on Chr 6; Odc-rs6 between Abpa and Tam-1 on proximal Chr 7; Odc-rs7 near Hbb on distal Chr 7; Odc-rs12 near Agt and Emv-2 on distal Chr 8; Odc-rs8 associated with the Igh complex on Chr 12; and Odc-rs9 near Otf-3f on Chr 14. The ODC-related sequence family thus comprises a set of genomically dispersed marker loci, and alleles for several of these loci can be analyzed simultaneously in DNA from mice or cell lines. DNA from mice of 70 inbred strains has been characterized for alleles at all nine Odc-rs loci.  相似文献   

20.
Thirteen loci, including the obesity gene fatty (fa), were incorporated into a linkage map of rat Chromosome (Chr) 5. These loci were mapped in obese (fa/fa) progeny of a cross between BN×13M-fa/+ F1 animals. Obese rats were scored for BN and 13M alleles at four loci (Ifna, D1S85h, C8b, and Lck1) by restriction fragment length polymorphisms and at eight additional loci (Glut1, Sv4j2, R251, R735, R980, R252, R371, and R1138) by simple sequence length polymorphisms (SSLP). The resulting map spans 67.3 cM of Chr 5, presenting nine previously unmapped loci and one locus (Lck1) previously assigned to Chr 5 by use of somatic cell hybrid lines. Seven of the eight SSLP loci are newly identified; the SSLP linkage group alone spans 56.8 cM. The order of the loci is Sv4j2-R251-R735-R980-R1138-Ifna-fa-D1S85h-C8b-(Glut1-R252-R371)-Lck1. One locus, D1S85h, was found to lie only 0.4 cM from fa, close enough to serve as a reliable marker for the prediction of phenotype from genotype, and will be useful also for studies on the development of obesity in the fatty rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号