首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most aspects of molecular biology can be understood in terms of biological design principles. These principles can be loosely defined as qualitative and quantitative features that emerge in evolution and recur more frequently than one would expect by chance alone in biological systems that perform a given type of process or function. Furthermore, such recurrence can be rationalized in terms of the functional advantage that the design provides to the system when compared with possible alternatives. This paper focuses on those design features that can be related to improved functional effectiveness of molecular and regulatory networks. We begin by reviewing assumptions and methods that underlie the study of such principles in molecular networks. We follow by discussing many of the design principles that have been found in genetic, metabolic, and signal transduction circuits. We concentrate mainly on results in the context of Biochemical Systems Theory, although we also briefly discuss other work. We conclude by discussing the importance of these principles for both, understanding the natural evolution of complex networks at the molecular level and for creating artificial biological systems with specific features.  相似文献   

2.
Membrane proteins are involved in a wide variety of cellular processes, and are typically part of the first interaction a cell has with extracellular molecules. As a result, these proteins comprise a majority of known drug targets. Membrane proteins are among the most difficult proteins to obtain and characterize, and a structure-based understanding of their properties can be difficult to elucidate. Notwithstanding, the design of membrane proteins can provide stringent tests of our understanding of these crucial biological systems, as well as introduce novel or targeted functionalities. Computational design methods have been particularly helpful in addressing these issues, and this review discusses recent studies that tailor membrane proteins to display specific structures or functions and examines how redesigned membrane proteins are being used to facilitate structural and functional studies.  相似文献   

3.
Metals are commonly found as natural constituents of proteins. Since many such metals can interact specifically with their corresponding unfolded proteins in vitro , cofactor-binding prior to polypeptide folding may be a biological path to active metalloproteins. By interacting with the unfolded polypeptide, the metal may create local structure that initiates and directs the polypeptide-folding process. Here, we review recent literature that addresses the involvement of metals in protein-folding reactions in vitro . To date, the best characterized systems are simple one such as blue-copper proteins, heme-binding proteins, iron-sulfur-cluster proteins and synthetic metallopeptides. Taken together, the available data demonstrates that metals can play diverse roles: it is clear that many cofactors bind before polypeptide folding and influence the reaction; yet, some do not bind until a well-structured active site is formed. The significance of characterizing the effects of metals on protein conformational changes is underscored by the many human diseases that are directly linked to anomalous protein-metal interactions.  相似文献   

4.
5.
Several self-assembling peptide and protein systems that form nanotubes, helical ribbons and fibrous scaffolds have recently emerged as biological materials. Peptides and proteins have also been selected to bind metals, semiconductors and ions, inspiring the design of new materials for a wide range of applications in nano-biotechnology.  相似文献   

6.
Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.  相似文献   

7.
BackgroundThe binding of metal ions to proteins is a crucial process required for their catalytic activity, structural stability and/or functional regulation. Isothermal titration calorimetry provides a wealth of fundamental information which when combined with structural data allow for a much deeper understanding of the underlying molecular mechanism.Scope of reviewA rigorous understanding of any molecular interaction requires in part an in-depth quantification of its thermodynamic properties. Here, we provide an overview of recent studies that have used ITC to quantify the interaction of essential first row transition metals with relevant proteins and highlight major findings from these thermodynamic studies.General significanceThe thermodynamic characterization of metal ion–protein interactions is one important step to understanding the role that metal ions play in living systems. Such characterization has important implications not only to elucidating proteins' structure-function relationships and biological properties but also in the biotechnology sector, medicine and drug design particularly since a number of metal ions are involved in several neurodegenerative diseases.Major conclusionsIsothermal titration calorimetry measurements can provide complete thermodynamic profiles of any molecular interaction through the simultaneous determination of the reaction binding stoichiometry, binding affinity as well as the enthalpic and entropic contributions to the free energy change thus enabling a more in-depth understanding of the nature of these interactions. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

8.
合成生物学的目标包括“通过合成来理解生命”以及用现代工程学方法设计合成复杂生物系统.其工程学目标的实现依赖于可集成、可调控、可重用、功能多样的蛋白质、RNA、DNA等基本分子元件.以分子机制为基础,合理设计与实验室进化相结合,改造和创建生物分子的相互作用特异性、调控方式、定量活性等,是实现生物系统人工调控与编程的重要策略,同时为自下而上设计合成日益复杂的人工生物系统奠定基础.  相似文献   

9.
The ability of proteins to fold to their functional states following synthesis in the intracellular environment is one of the most remarkable features of biology. Substantial progress has recently been made towards understanding the fundamental nature of the mechanism of the folding process. This understanding has been achieved through the development and concerted application of a variety of novel experimental and theoretical approaches to this complex problem. The emerging view of folding is that it is a stochastic process, but one biased by the fact that native-like interactions between residues are, on average, more stable than non-native ones. The sequences of natural proteins have emerged through evolutionary processes such that their unique native states can be found very efficiently even in the complex environment inside a living cell. But under some conditions proteins fail to fold correctly, or to remain correctly folded, in living systems, and this failure can result in a wide range of diseases. One group of diseases, known as amyloidoses, which includes Alzheimer's disease and the transmissible spongiform encephalopathies, involves deposition of aggregated proteins in a variety of tissues. These diseases are particularly intriguing because evidence is accumulating that the formation of the highly organized amyloid aggregates is a generic property of polypeptides, and not simply a feature of the few proteins associated with recognized pathological conditions. That such aggregates are not normally found in properly functional biological systems is again a testament to evolution, in this case of a variety of mechanisms inhibiting their formation. Understanding the nature of such protective mechanisms is a crucial step in the development of strategies to prevent and treat these debilitating diseases.  相似文献   

10.
The structural basis of protein folding and its links with human disease   总被引:16,自引:0,他引:16  
The ability of proteins to fold to their functional states following synthesis in the intracellular environment is one of the most remarkable features of biology. Substantial progress has recently been made towards understanding the fundamental nature of the mechanism of the folding process. This understanding has been achieved through the development and concerted application of a variety of novel experimental and theoretical approaches to this complex problem. The emerging view of folding is that it is a stochastic process, but one biased by the fact that native-like interactions between residues are on average more stable than non-native ones. The sequences of natural proteins have emerged through evolutionary processes such that their unique native states can be found very efficiently even in the complex environment inside a living cell. But under some conditions proteins fail to fold correctly, or to remain correctly folded, in living systems, and this failure can result in a wide range of diseases. One group of diseases, known as amyloidoses, which includes Alzheimer's and the transmissible spongiform encephalopathies, involves deposition of aggregated proteins in a variety of tissues. These diseases are particularly intriguing because evidence is accumulating that the formation of the highly organized amyloid aggregates is a generic property of polypeptides, and not simply a feature of the few proteins associated with recognized pathological conditions. That such aggregates are not normally found in properly functional biological systems is again a testament to evolution, in this case of a variety of mechanisms inhibiting their formation. Understanding the nature of such protective mechanisms is a crucial step in the development of strategies to prevent and treat these debilitating diseases.  相似文献   

11.
Interpreting the behavior of enzymes: purpose or pedigree?   总被引:5,自引:0,他引:5  
To interpret the growing body of data describing the structural, physical, and chemical behaviors of biological macromolecules, some understanding must be developed to relate these behaviors to the evolutionary processes that created them. Behaviors that are the products of natural selection reflect biological function and offer clues to the underlying chemical principles. Nonselected behaviors reflect historical accident and random drift. This review considers experimental data relevant to distinguishing between nonfunctional and functional behaviors in biological macromolecules. In the first segment, tools are developed for building functional and historical models to explain macromolecular behavior. These tools are then used with recent experimental data to develop a general outline of the relationship between structure, behavior, and natural selection in proteins and nucleic acids. In segments published elsewhere, specific functional and historical models for three properties of enzymes--kinetics, stereospecificity, and specificity for cofactor structures--are examined. Functional models appear most suitable for explaining the kinetic behavior of proteins. A mixture of functional and historical models appears necessary to understand the stereospecificity of enzyme reactions. Specificity for cofactor structures appears best understood in light of purely historical models based on a hypothesis of an early form of life exclusively using RNA catalysis.  相似文献   

12.
Several toxic effects arise from Al's presence in living systems, one of them being the alteration of the natural role of enzymes and non-enzyme proteins. Al(III) is capable of entering protein active sites that in normal conditions should be occupied by other metals. Even if Mg(II) is an ubiquitous metal in biological systems, the interference of aluminium in magnesium metabolism is not clear yet. In this work, a systematic study of the affinity of Al(III) for different protein binding sites is presented, with special attention on structural parameters, the role of the charge and the presence of different ligands in the protein cavity. The specificity of the binding site for Al(III) against Mg(II) has been studied, and also the thermodynamical propensity of a Mg(II)/Al(III) exchange. Quantum mechanical methods that proved to be reliable in previous works have been used, namely, the density functional theory (DFT) and polarizable continuum model (PCM).  相似文献   

13.
Synthetic biology through biomolecular design and engineering   总被引:1,自引:0,他引:1  
Synthetic biology is a rapidly growing field that has emerged in a global, multidisciplinary effort among biologists, chemists, engineers, physicists, and mathematicians. Broadly, the field has two complementary goals: To improve understanding of biological systems through mimicry and to produce bio-orthogonal systems with new functions. Here we review the area specifically with reference to the concept of synthetic biology space, that is, a hierarchy of components for, and approaches to generating new synthetic and functional systems to test, advance, and apply our understanding of biological systems. In keeping with this issue of Current Opinion in Structural Biology, we focus largely on the design and engineering of biomolecule-based components and systems.  相似文献   

14.
RNA molecules play diverse functional roles in natural biological systems. There has been growing interest in designing synthetic RNA counterparts for programming biological function. The design of synthetic RNA molecules that exhibit diverse activities, including sensing, regulatory, information processing, and scaffolding activities, has highlighted the advantages of RNA as a programmable design substrate. Recent advances in implementing these engineered RNA molecules as key control elements in synthetic genetic networks are highlighting the functional relevance of this class of synthetic elements in programming cellular behaviors.  相似文献   

15.
Protein–ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein–ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein–ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein–ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings.  相似文献   

16.
Pollution of soils by heavy metals is an ever‐growing problem throughout the world, and is the result of human activities as well as geochemical weathering of rocks and other environmental causes such as volcanic eruptions, acid rain and continental dusts. Plants everywhere are continuously exposed to metal‐contaminated soils. The uptake of heavy metals not only constrains crop yields, but can also be a major hazard to the health of humans and to the entire ecosystem. Although analysis of gene expression at the mRNA level has enhanced our understanding of the response of plants to heavy metals, many questions regarding the functional translated portions of plant genomes under metal stress remain unanswered. Proteomics offers a new platform for studying complex biological functions involving large numbers and networks of proteins, and can serve as a key tool for revealing the molecular mechanisms that are involved in interactions between toxic metals and plant species. This review focuses on recent developments in the applications of proteomics to the analysis of the responses of plants to heavy metals; such studies provide a deeper understanding of protein responses and the interactions among the possible pathways that are involved in detoxification of toxic metals in plant cells. In addition, the challenges faced by proteomics in understanding the responses of plants to toxic metal are discussed, and some possible future strategies for meeting these challenges are proposed.  相似文献   

17.
ABSTRACT: BACKGROUND: Essential genes represent the core of biological functions required for viability. Molecular understanding of essentiality as well as design of synthetic cellular systems includes the engineering of essential proteins. An impediment to this effort is the lack of growth-based selection systems suitable for directed evolution approaches. RESULTS: We established a simple strategy for genetic replacement of an essential gene by a (library of) variant(s) during a transformation. The system was validated using three different essential genes and plasmid combinations and it reproducibly shows transformation efficiencies on the order of 107 transformants per microgram of DNA without any identifiable false positives. This allowed for reliable recovery of functional variants out of at least a 105-fold excess of non-functional variants. This outperformed selection in conventional bleach-out strains by at least two orders of magnitude, where recombination between functional and non-functional variants interfered with reliable recovery even in recA negative strains. CONCLUSIONS: We propose that this selection system is extremely suitable for evaluating large libraries of engineered essential proteins resulting in the reliable isolation of functional variants in a clean strain background which can readily be used for in vivo applications as well as expression and purification for use in in vitro studies.  相似文献   

18.
There is an urgent need for new tools that enable better understanding of the structure, recognition, metabolism, and biosynthesis of glycans as well as the production of biologically important glycans and glycoconjugates. With the discovery of glycoprotein synthesis in bacteria and functional transfer of glycosylation pathways between species, Escherichia coli cells have become a tractable host for both understanding glycosylation and the underlying glycan code of living cells as well as for expressing glycoprotein therapeutics and vaccines. Here, we review recent efforts to harness natural biological pathways and engineer synthetic designer pathways in bacteria for making complex glycans and conjugating these to lipids and proteins. The result of these efforts has been a veritable transformation of bacteria into living factories for scalable, bottom‐up production of complex glycoconjugates by design. Biotechnol. Bioeng. 2013; 110: 1550–1564. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Systems biology is an emerging discipline focused on tackling the enormous intellectual and technical challenges associated with translating genome sequence into a comprehensive understanding of how organisms are built and run. Physiology and systems biology share the goal of understanding the integrated function of complex, multicomponent biological systems ranging from interacting proteins that carry out specific tasks to whole organisms. Despite this common ground, physiology as an academic discipline runs the real risk of fading into the background and being superseded organizationally and administratively by systems biology. My goal in this article is to discuss briefly the cornerstones of modern systems biology, specifically functional genomics, nonmammalian model organisms and computational biology, and to emphasize the need to embrace them as essential components of 21st-century physiology departments and research and teaching programs.  相似文献   

20.
Zhao B  Poh CL 《Proteomics》2008,8(4):874-881
Environmental pollutants in the soil are a major concern worldwide. Bioremediation mediated by microorganisms is a highly promising technology that is environmentally friendly, safe, and effective. However, incomplete biological information regarding the cellular responses in many microbial communities restricts progress in the site-specific mineralization process. The application of proteomics in environmental bioremediation research provides a global view of the protein compositions of the microbial cells and offers a promising approach to address the molecular mechanisms of bioremediation. With the combination of proteomics, functional genomics provide an insight into global metabolic and regulatory networks that can enhance the understanding of gene functions. This article deals with the applications of functional genomics and proteomics to dissect the cellular responses to environmental stimuli, such as stress response, induction and expressions of regulatory proteins/enzymes in response to aromatic hydrocarbons and heavy metals. An understanding of the growth conditions governing the expression of the proteome (for example, enzymes and regulatory proteins of aromatic hydrocarbon degradation, energy generation pathways, transport and stress-related proteins) in a specific environment is essential for developing rational strategies for successful bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号