首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
The inducible response to H(2)O(2) stress in Bacillus subtilis is under the control of PerR, one of three Fur homologues in this organism. PerR was purified in both an inactive, metal-dependent form and an active, metal-containing form as determined using DNA-binding assays. Active PerR contains both zinc and iron and is designated PerR:Zn,Fe. Added manganous ion competes for binding to the iron site and can restore DNA-binding activity to the metal-dependent form of PerR, presumably generating PerR:Zn,Mn. The DNA-binding activity of PerR:Zn,Fe is eliminated by exposure to H(2)O(2) whereas PerR:Zn,Mn is comparatively resistant. DNA-binding activity can be restored by a thiol-reducing agent, suggesting that redox-active cysteines are involved in peroxide sensing. Experiments using reporter fusions demonstrate that elevated levels of manganese repress PerR regulon genes and prevent their full induction by H(2)O(2). In contrast, in cells grown with iron supplementation, a PerR-repressed gene is completely derepressed by H(2)O(2). These results are consistent with the idea that the intracellular form of the PerR metalloprotein, and therefore its hydrogen peroxide sensitivity, can be altered by growth conditions.  相似文献   

5.
6.
7.
Bacillus subtilis, a Gram-positive soil bacterium, provides a model system for the study of metal ion homeostasis. Metalloregulatory proteins serve as the arbiters of metal ion sufficiency and regulate the expression of metal homeostasis pathways. In B. subtilis, uptake systems are regulated by the highly selective metal-sensing repressors Fur (iron), Zur (zinc), and MntR (manganese). Metal efflux systems are regulated by MerR and ArsR family homologs which, by contrast, can be rather non-specific with regard to metal selectivity. A Fur homolog, PerR, functions as an Fe(II)-dependent peroxide stress sensor and regulates putative metal transport and storage functions.  相似文献   

8.
9.
10.
Ma Z  Lee JW  Helmann JD 《Nucleic acids research》2011,39(12):5036-5044
Bacillus subtilis PerR is a Fur family repressor that senses hydrogen peroxide by metal-catalyzed oxidation. PerR contains a structural Zn(II) ion (Site 1) and a regulatory metal binding site (Site 2) that, upon association with either Mn(II) or Fe(II), allosterically activates DNA binding. In addition, a third less conserved metal binding site (Site 3) is present near the dimer interface in several crystal structures of homologous Fur family proteins. Here, we show that PerR proteins with substitutions of putative Site 3 residues (Y92A, E114A and H128A) are functional as repressors, but are unexpectedly compromised in their ability to sense H(2)O(2). Consistently, these mutants utilize Mn(II) but not Fe(II) as a co-repressor in vivo. Metal titrations failed to identify a third binding site in PerR, and inspection of the PerR structure suggests that these residues instead constitute a hydrogen binding network that modulates the architecture, and consequently the metal selectivity, of Site 2. PerR H128A binds DNA with high affinity, but has a significantly reduced affinity for Fe(II), and to a lesser extent for Mn(II). The ability of PerR H128A to bind Fe(II) in vivo and to thereby respond efficiently to H(2)O(2) was restored in a fur mutant strain with elevated cytosolic iron concentration.  相似文献   

11.
We utilized a full genome cDNA microarray to identify the genes that comprise the peroxide stimulon in the cyanobacterium Synechocystis sp. strain PCC 6803. We determined that a gene (slr1738) encoding a protein similar to PerR in Bacillus subtilis was induced by peroxide. We constructed a PerR knockout strain and used it to help identify components of the PerR regulon, and we found that the regulatory properties were consistent with the hypothesis that PerR functions as a repressor. This effort was guided by finding putative PerR boxes in positions upstream of specific genes and by careful statistical analysis. PerR and sll1621 (ahpC), which codes for a peroxiredoxin, share a divergent promoter that is regulated by PerR. We found that isiA, encoding a Chl protein that is induced under low-iron conditions, was strongly induced by a short-term peroxide stress. Other genes that were strongly induced by peroxide included sigD, sigB, and genes encoding peroxiredoxins and Dsb-like proteins that have not been studied yet in this strain. A gene (slr1894) that encoded a protein similar to MrgA in B. subtilis was upregulated by peroxide, and a strain containing an mrgA knockout mutation was highly sensitive to peroxide. A number of genes were downregulated, including key genes in the chlorophyll biosynthesis pathway and numerous regulatory genes, including those encoding histidine kinases. We used PerR mutants and a thioredoxin mutant (TrxA1) to study differential expression in response to peroxide and determined that neither PerR nor TrxA1 is essential for the peroxide protective response.  相似文献   

12.
The Staphylococcus aureus DtxR-like protein, MntR, controls expression of the mntABC and mntH genes, which encode putative manganese transporters. Mutation of mntABC produced a growth defect in metal-depleted medium and increased sensitivity to intracellularly generated superoxide radicals. These phenotypes resulted from diminished uptake of manganese and were rescued by the addition of excess Mn(II). Resistance to superoxide was incompletely rescued by Mn(II) for STE035 (mntA mntH), and the strain had reduced virulence in a murine abscess model of infection. Expression of mntABC was repressed by Mn(II) in an MntR-dependent manner, which contrasts with the expression of mntH that was not repressed in elevated Mn(II) and was decreased in an mntR mutant. This demonstrates that MntR acts as a negative and positive regulator of these loci respectively. PerR, the peroxide resistance regulon repressor, acts with MntR to control the expression of mntABC and manganese uptake. The expression of the PerR-regulated genes, katA (catalase), ftn (ferritin) and fur (ferric uptake regulator), was diminished in STE031 (mntR) when grown in excess Mn(II). Therefore, the control of Mn(II)-regulated members of the PerR regulon and the Fur protein is modulated by MntR through its control of Mn(II) uptake. The co-ordinated regulation of metal ion homeostasis and oxidative stress resistance via the regulators MntR, PerR and Fur of S. aureus is discussed.  相似文献   

13.
14.
The alternative sigma factor sigmaB of Bacillus subtilis is required for the induction of approximately 100 genes after the imposition of a whole range of stresses and energy limitation. In this study, we investigated the impact of a null mutation in sigB on the stress and starvation survival of B. subtilis. sigB mutants which failed to induce the regulon following stress displayed an at least 50- to 100-fold decrease in survival of severe heat (54 degrees C) or ethanol (9%) shock, salt (10%) stress, and acid (pH 4.3) stress, as well as freezing and desiccation, compared to the wild type. Preloading cells with sigmaB-dependent general stress proteins prior to growth-inhibiting stress conferred considerable protection against heat and salt. Exhaustion of glucose or phosphate induced the sigmaB response, but surprisingly, sigmaB did not seem to be required for starvation survival. Starved wild-type cells exhibited about 10-fold greater resistance to salt stress than exponentially growing cells. The data argue that the expression of sigmaB-dependent genes provides nonsporulated B. subtilis cells with a nonspecific multiple stress resistance that may be relevant for stress survival in the natural ecosystem.  相似文献   

15.
16.
17.
The Bacillus subtilis PerR repressor regulates the adaptive response to peroxide stress. The PerR regulon includes the major vegetative catalase (katA), an iron storage protein (mrgA), an alkylhydroperoxide reductase (ahpCF), a zinc uptake system (zosA), heme biosynthesis enzymes (hemAXCDBL), the iron uptake repressor (fur), and perR itself. A perR null strain is resistant to hydrogen peroxide, accumulates a porphyrin-like compound, and grows very slowly. The poor growth of the perR mutant can be largely accounted for by the elevated expression of two proteins: the KatA catalase and Fur. Genetic studies support a model in which poor growth of the perR null mutant is due to elevated repression of iron uptake by Fur, exacerbated by heme sequestration by the abundant catalase protein. Analysis of the altered-function allele perR991 further supports a link between PerR and iron homeostasis. Strains containing perR991 are peroxide resistant but grow nearly as well as the wild type. Unlike a perR null allele, the perR991 allele (F51S) derepresses KatA, but not Fur, which likely accounts for its comparatively rapid growth.  相似文献   

18.
Staphylococcus aureus is a highly virulent human pathogen with an extensive array of strategies to subvert the innate immune response. An important aspect of innate immunity is the production of the nitrogen monoxide radical (Nitric Oxide, NO.). Here we describe an adaptive response to nitrosative stress that allows S. aureus to replicate at high concentrations of NO.. Microarray analysis revealed 84 staphylococcal genes with significantly altered expression following NO. exposure. Of these, 30 are involved with iron-homeostasis, potentially under the control of the Fur regulator. Another seven induced genes are involved in hypoxic/fermentative metabolism, including the flavohaemoprotein, Hmp. The SrrAB two-component system has been shown to regulate the expression of many of the NO.-induced metabolic genes. Indeed, inactivation of hmp, srrAB and fur resulted in heightened NO. sensitivity. Hmp was responsible for c. 90% of measurable staphylococcal NO. consumption and therefore critical for efficient NO. detoxification. While SrrAB was required for maximal hmp expression, srrAB mutants still exhibited significant NO. scavenging and NO.-dependent induction of hmp. Yet S. aureus lacking SrrAB were more sensitive to nitrosative stress than hmp mutants, indicating that the contribution of SrrAB to NO. resistance extends beyond the regulation of hmp expression. Both Hmp and SrrAB were required for full virulence in a murine sepsis model, however, only the attenuation of the hmp mutant was restored by the abrogation of host NO. production. Thus, the S. aureus Hmp protein has evolved to serve as an iNOS-dependent virulence determinant.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号