首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sulfated components of enveloped viruses.   总被引:13,自引:13,他引:0       下载免费PDF全文
The glycoproteins of several enveloped viruses, grown in a variety of cell types, are labeled with 35SO4(-2), whereas the nonglycosylated proteins are not. This was shown for the HN and F glycoproteins of SV5 and Sendai virus, the E1 and E2 glycoproteins of Sindbis virus, and for the major glycoprotein, gp69, as well as for a minor glycoprotein, gp52, of Rauscher leukemia virus. The minor glycoprotein of Rauscher leukemia virus is more highly sulfated, with a ratio of 35SO4- [3H]glucosamine about threefold greater than that of gp69. The G protein of vesicular stomatitis virus was labeled when virions were grown in the MDBK line of bovine kidney cells, although no significant incorporation of 35SO4(-2) into this protein was observed in virions grown in BHK21-F line of baby hamster kidney cells. In addition to the viral glycoproteins, sulfate was also incorporated into a heterogenous component with an electrophoretic mobility lower than that of any labeled with 35SO4(-2) and [3H]leucine, this component had a much greater 35S-3H ratio than any of the viral polypeptides and thus could not represent aggregated viral proteins. This material is believed to be a cell-derived mucopolysaccharide and can be removed from virions by treatment with hyaluronidase without affecting the amount of sulfate present on the glycoproteins.  相似文献   

2.
The antibiotic tunicamycin, which blocks the synthesis of glycoproteins, inhibited the production of infectious herpes simplex virus. In the presence of this drug, [14C]glucosamine and [3H]mannose incorporation was reduced in infected cells, whereas total protein synthesis was not affected. Gel electrophoresis of [2-3H]mannose-labeled polypeptides failed to detect glycoprotein D or any of the other herpes simplex virus glycoproteins. By use of specific antisera we demonstrated that in the presence of tunicamycin the normal precursors to viral glycoproteins failed to appear. Instead, lower-molecular-weight polypeptides were found which were antigenically and structurally related to the glycosylated proteins. Evidence is presented to show that blocking the addition of carbohydrate to glycoprotein precursors with tunicamycin results in the disappearance of molecules, possibly due to degradation of the unglycosylated polypeptides. We infer that the added carbohydrate either stabilizes the envelope proteins or provides the proper structure for correct processing of the molecules needed for infectivity.  相似文献   

3.
Swainsonine, an inhibitor of glycoprotein processing, inhibits the formation of the normal oligosaccharide chain of the G protein of vesicular stomatitis virus. Thus, when vesicular stomatitis virus was grown in baby hamster kidney cells in the presence of swainsonine (15 to 500 ng/ml) and labeled with [2-(3)H]mannose, the oligosaccharide portion of the G protein was completely susceptible to the action of endoglucosaminidase H. However, the normal viral glycoprotein is not susceptible to this enzyme. Various enzymatic treatments and methylation studies of the mannose-labeled oligosaccharides suggest that swainsonine causes the formation of a hybrid-type oligosaccharide having an oligomannosyl core (Man(5)GlcNAc(2)-Asn) characteristic of neutral oligosaccharides plus the branch structure (NeuNAc-Gal-GlcNAc) characteristic of the complex oligosaccharides. A structure for this hybrid oligosaccharide is proposed. Swainsonine had no effect on the incorporation of [(14)C]leucine into viral proteins, nor did it change the number of PFU produced in these cultures. It did, however, slightly decrease the incorporation of [(3)H]glucosamine and increase the incorporation of [(3)H]mannose. Vesicular stomatitis virus raised in the presence of swainsonine bound much more tightly to columns of concanavalin A-Sepharose than did control virus. Swainsonine had to be added within the first 4 or 5 h of virus infection to be effective. Thus, when 100 ng of the alkaloid per ml was added at any time within the first 3 h of infection, essentially all of the glycoprotein was susceptible to digestion by endoglucosaminidase H. However, when swainsonine was added 4 h after the start of infection, 30% of the glycopeptides became resistant to endoglucosaminidase H; at 5 h, 70% were resistant. The effect of swainsonine was reversible since removal of the alkaloid allowed the cells to form the normal complex glycoproteins. However, the time of removal was critical in terms of oligosaccharide structure.  相似文献   

4.
Structural proteins of two salmonid rhabdoviruses.   总被引:8,自引:8,他引:0       下载免费PDF全文
Purified infectious hematopoietic necrosis (IHN) virus and the virus of haemorrhagic septicaemia (VHS) (Egtved virus) each contain five structural proteins which were designated L, G, N, M-1, and M-2. The IHN viral polypeptides have molecular weights estimated to be 157,000, 72,000, 40,000, 25,000 and 20,000, respectively, whereas those of VHS viral polypeptides are estimated to be 157,000 74,000, 41,000, 21,500, and 19,000, respectively. The carbohydrate composition of the glycoprotein (G) was confirmed by demonstrating selective incorporation of [3H]glucosamine into the designated G protein of both viruses. Phosphoproteins were identified by incorporation of [32P]orthophosphate into the N and M-1 proteins of IHN virus and into the N protein of VHS virus. The glycoprotein of each virus was selectively solubilized by treatment with Triton X-100 in low salt buffer, whereas the M-1, and M-2 proteins along with the G protein were solubilized by Ttition X-100 in 0.43 M NaCl. The protein composition of the salmonid rhabdoviruses resembles that of the rabies virus group more closely than the vesicular stomatitis virus group.  相似文献   

5.
Rabies virus protein synthesis in infected BHK-21 cells.   总被引:11,自引:9,他引:2       下载免费PDF全文
Rabies virus specific polypeptide synthesis was examined under hypertonic conditions, which selectively inhibit cellular protein synthesis. The rabies virus proteins (L, G, N, M1, M2) were synthesized throughout the course of infection, with little change in their relative rates of synthesis. The rates of synthesis of the G and M1 polypeptides were more sensitive to increasing osmolarity than those of the L, N, and M2 polypeptides. Extrapolation to isotonicity of the results obtained under hypertonic conditions indicated that the molar ratios of the polypeptides synthesized under normal conditions were 0.4 (L), 64 (G), 100 (N), 75 (M1) and 35 (M2). A high-molecular-weight polypeptide (190,000), designated polypeptide L, was repeatedly detected both in infected cells and in extracellular virus. The estimated number of L polypeptide molecules per virion was 33. The synthesis of a viral glycoprotein precursor, designated gp78, , preceded the appearance of the mature viral glycoprotein in infected cells labeled with [3H]glucosamine under isotonic conditions. In cells labeled under hypertonic conditions, little or no mature viral glycoprotein was detected, but a virus-specific glycoprotein with an electrophoretic mobility similar to that of gp78 was observed. This glycoprotein could be chased into mature viral glycoprotein when the hypertonic conditions were made isotonic. These results suggest that a reversible block of viral glycoprotein synthesis occurs under hypertonic conditions.  相似文献   

6.
The effect of interferon on the expression of the vesicular stomatitis virus glycoprotein G gene was examined in simian COS cells transfected with the expression vector pSVGL containing the G gene under the control of the SV40 late promoter. When COS cells were treated with interferon 24 h after transfection, the synthesis of vesicular stomatitis virus G protein was inhibited by about 80% as compared to that in untreated controls. By contrast, under the same conditions, neither the plasmid copy number nor the G gene mRNA levels were detectably affected by interferon treatment. Likewise, the synthesis of simian virus 40 large T-antigen was not inhibited by interferon treatment of transfected COS cells even though the synthesis of vesicular stomatitis virus G protein was markedly inhibited. The residual G protein synthesized in transfected, interferon-treated COS cells appeared to be normally glycosylated.  相似文献   

7.
Antipeptide sera were used to identify a novel glycoprotein encoded by the UL53 gene of herpes simplex virus type 1 (HSV-1). The UL53 gene product is thought to play a central role in regulating membrane fusion because mutations giving rise to the syncytial phenotype, wherein cells are extensively fused, frequently map to this gene. A single 40-kDa protein, designated gK (the ninth HSV-1 glycoprotein to be described), was detected with antipeptide sera in cells infected with both wild-type and syncytial strains of HSV-1 which were labelled with [35S]methionine and [35S]cysteine or with [3H]glucosamine, and this protein was sensitive to treatment of cells with tunicamycin. With all other HSV glycoproteins studied to date, at least two glycosylated species, often differing substantially in electrophoretic mobility, have been observed in infected cells; thus, gK is unusual in this respect. The 40-kDa gK protein was also immunoprecipitated from cells infected with a recombinant adenovirus vector carrying the UL53 gene. Two glycosylated species of 39 and 41 kDa were produced when UL53 mRNA was translated in vitro in the presence of microsomes, and these proteins differed from gK produced in infected cells not only because they possessed different electrophoretic mobilities but also because they were unable to enter gels after being heated. In addition, a 36-kDa protein was detected in extracts from cells infected with HSV-2 with use of these sera.  相似文献   

8.
Polypeptides synthesized in Newcastle disease virus (NDV)-infected CHO cells in the absence of glycosylation were characterized. Incorporation of either [3H]mannose of [3H]glucosamine into NDV polypeptides was inhibited to greater than 99% by the antibiotic tunicamycin. Under these conditions, infected cells synthesized proteins which comigrated on polyacrylamide gels with the viral L protein, nucleocapsid protein, membrane protein, and a polypeptide with a molecular weight of 55,000 (P55). These cells did not synthesize polypeptides with the size of the hemagglutinin-neuraminidase (HN) protein or the fusion (F0) protein. They did, however, synthesize new polypeptides with molecular weights of 75,000 (P75), 67,000 (P67), and 52,000 (P52). Peptide analysis revealed that P75 was a host cell protein whose synthesis is enhanced by tunicamycin. P67 corresponded to the unglycosylated forms of the glycoproteins were found to be relatively stable in infected cells. P55, previously thought to correspond to the cleaved form of F0, was found to be a unique viral protein which is associated with intracellular nucleocapsid structures.  相似文献   

9.
Incubation of vesicular stomatitis virus-infected glucose-starved baby hamster kidney cells with [35S]methionine results in the synthesis of all viral proteins. However, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tryptic peptide mapping, the G protein is abnormally glycosylated. Metabolic labeling of the oligosaccharide-lipid precursors with [3H]mannose for 15 min, followed by Chromatographic and enzymatic analysis, indicates that the radiolabeled lipid-linked oligosaccharides are devoid of glucose in contrast to the glucosylated oligosaccharide-lipids synthesized by cells grown in the presence of glucose. Also, in contrast to control cells, examination of the glycopeptide fraction reveals the presence of [3H]mannose-labeled glycopeptides which are resistant to erado-β-N-acetylglucos-aminidase H and are smaller in size than glycopeptides from mature vesicular stomatitis virus. In order to observe these effects, a minimum time of 5 h of glucose deprivation is necessary and the addition of 55 μm glucose or mannose to the medium reverses these effects. These results indicate that vesicular stomatitis virus-infected BHK cells deprived of glucose are unable to glucosylate the oligosaccharide-lipid intermediates and, consequently, are unable to glycosylate the G protein normally.  相似文献   

10.
Two inhibitors of glycosylation, glucosamine and tunicamycin, were utilized to examine the effect of glycosylation inhibition in mouse neuroblastoma N18 cells on the degradation of membrane glycoproteins synthesized before addition of the inhibitor. Treatment with 10 mM-glucosamine resulted in inhibition of glycosylation after 2h, as measured by [3H]fucose incorporation into acid-insoluble macromolecules, and in a decreased rate of glycoprotein degradation. However, these results were difficult to interpret since glucosamine also significantly inhibited protein synthesis, which in itself could cause the alteration in glycoprotein degradation [Hudson & Johnson (1977) Biochim. Biophys. Acta 497, 567-577]. N18 cells treated with 5 microgram of tunicamycin/ml, a more specific inhibitor of glycosylation, showed a small decrease in protein synthesis relative to its effect on glycosylation, which was inhibited by 85%. Tunicamycin-treated cells also showed a marked decrease in glycoprotein degradation in experiments with intact cells. The inhibition of glycoprotein degradation by tunicamycin was shown to be independent of alterations in cyclic AMP concentration. Polyacrylamide-gel electrophoresis of isolated membranes from N18 cells, double-labelled with [14C]fucose and [3H]fucose, revealed heterogeneous turnover rates for specific plasma-membrane glycoproteins. Comparisons of polyacrylamide gels of isolated plasma membranes from [3H]fucose-labelled control cells and [14C]fucose-labelled tunicamycin-treated cells revealed that both rapidly and slowly metabolized, although not all, membrane glycoproteins became resistant to degradation after glycosylation inhibition.  相似文献   

11.
I studied the glycosylation in vivo of a viral envelope protein, the glycoprotein of vesicular stomatitis virus (VSV), by pulse labelling of virus-infected HeLa cells with 3H-labelled monosaccharides (mannose, glucosamine). Radioactivity was incorporated into the fraction of membrane-bound polyribosomes, although metabolic conversion of [3H]-mannose into amino acids was negligible. Dissociation of bound polyribosomes revealed that the radioactively co-purified with the peptidyl-tRNA. The nascent peptides were released by alkaline hydrolysis, immunoprecipitated and analysed by polyacrylamide-gel electrophoresis. It is apparent from the size distribution of the [3H]mannose-labelled nascent chains that attachment of carbohydrate starts when approximately half of the amino acid sequence of the viral glycoprotein has been synthesized.  相似文献   

12.
To determine the particular intracellular steps in the glycosylation of the vesicular stomatitis virus (VSV) glycoprotein that were altered in several lectin-resistant CHO cell lines, VSV-infected parental and mutant cells were pulse-labeled for 30 and 120 min with [3H]mannose and [3H]glucosamine. Cell-associated viral glycopeptides were analyzed by gel filtration combined with specific glycosidase digestions and compared with the corresponding mature virion oligosaccharides. The intracellular glycosylation of the VSV glycoprotein in a mutant cell line resistant to phytohemagglutinin was identical to that in the normal cells except for a complete block in processing at a specific step in the final trimming of the oligomannosyl core from five to three mannoses. The results demonstrated that a double-mutant cell line selected from the phytohemagglutinin-resistant cells for resistance to concanavalin A had an additional defect in one of the earliest stages of glycosylation, resulting in smaller precursor oligosaccharides linked to protein.  相似文献   

13.
Infection of MPC-11 mouse plasmacytoma cells by vesicular stomatitis virus results in 30 to 35% reduction in [35S]methionine incorporation into total proteins within 30 min postinfection. By 6 h postinfection, total protein synthesis is reduced by 80 to 90%. However, even by 30 min postinfection, a differential suppression of the synthesis of individual host protein is observed. The synthesis of the immunoglobin G (IgG) heavy chain (H), and, in particular, the synthesis of IgG light chain (L), is considerably more resistant to vesicular stomatitis virus-induced inhibition than is the synthesis of the non-IgG proteins as a whole; e.g., when the synthesis of non-IgG proteins was reduced by 41%, the synthesis of the H and L chains was reduced by 28 and 7%, respectively. Furthermore, these alterations in the relative synthesis of the L chain, H chain, and non-IgG are comparable to the alterations previously observed in uninfected MPC-11 cells when the overall rate of polypeptide chain initiation was selectively reduced (D.L. Nuss and G. Koch, 1976). These results are discussed in terms of the strategy of virus-directed suppression of host mRNA translation.  相似文献   

14.
The association of vesicular stomatitis virus proteins with intracellular and plasma membranes was examined by pulse and pulse-chase labeling of virus-infected HeLa cells with [35S]methionine and separation of cell homogenates into three major membrane fractions in discontinuous sucrose gradients. The glycoprotein G was primarily associated with rough endoplasmic reticulum-like membranes after short radioactive pulses (2 to 4 min) but accumulated in the plasma membrane-enriched fraction and the smooth internal membrane fraction with longer pulse or chase periods. The nucleocapsid protein N and the matrix protein M accumulated in the rough endoplasmic reticulum and plasma membrane-like fractions but not in the smooth internal membrane fraction. Only a fraction (35 to 40%) of the viral protein synthesized during a short pulse in the mid-cycle of infection was apparently utilized in released virus. The newly synthesized virus proteins first appeared in released virus in the order: M, N and L, and G.  相似文献   

15.
The single envelope glycoprotein of vesicular stomatitis virus was used as a specific probe of glycosyltransferase activities in fibroblasts from two cystic fibrosis patients, an obligate heterozygous carrier and a normal individual. Gel filtration of pronasedigested glycopeptides from both purified virions and infected cell-associated VSV glycoprotein which had been labeled with [3H] glucosamine did not reveal any significant differences in the glycosylation patterns between the different cell cultures. All 4 cell lines were apparently able to synthesize the mannose- and glucosamine-containing core structure and branch chains terminating in sialic acid which are characteristic of asparagine-linked carbohydrate side chains in cellular glycoproteins. Analysis of tryptic glycopeptides by anion-exchange chromotography indicated that the same 2 major sites on the virus polypeptide were recognized and glycosylated in all 4 VSV-infected cell cultures. These studies suggest that the basic biochemical defect(s) in cystic fibrosis is not an absence or deficiency in enzymes responsible for the biosynthesis of complex carbohydrate side chains.  相似文献   

16.
The intracellular migration of G protein in vesicular stomatitis virus-infected cells was visualized by light and electron microscope radioautography after a 2-min pulse with [3H]mannose followed by nonradioactive chase for various intervals. The radioactivity initially (at 5-10 min) appeared predominantly in the endoplasmic reticulum, and the [3H]mannose-labeled G protein produced was sensitive to endoglycosidase H. Silver grains were subsequently (at 30-40 min) observed over the Golgi apparatus, and the [3H]mannose-labeled G protein became resistant to endoglycosidase H digestion. Our data directly demonstrate the intracellular transport of a plasmalemma-destined transmembrane glycoprotein through the Golgi apparatus.  相似文献   

17.
The role of carbohydrate in the morphogenesis of vesicular stomatitis virus was studied, using the antibiotic tunicamycin to inhibit glycosylation. It has been reported previously (Gibson et al., J. Biol. Chem. 254:3600-3607, 1979) that the San Juan strain of vesicular stomatitis virus requires carbohydrate for efficient migration of the glycoprotein (G) to the cell surface and for virion formation, whereas the prototype or Orsay strain of vesicular stomatitis virus is less stringent in its carbohydrate requirement at 30 degrees C. However, there are many differences between the two strains. We found that mutational changes within the G protein of the same strain of virus (prototype or Orsay) alters the requirement for carbohydrate at 30 degrees C. Group V or G protein mutants tsO45 and tsO44, like their prototype parent, did not require carbohydrate for efficient morphogenesis. In contrast, the G protein of another group V mutant, tsO110, was totally dependent upon carbohydrate addition for migration to the cell surface. Furthermore, no tsO110 particles were released in the absence of glycosylation. The wild-type prototype strain did require carbohydrate at 39.5 degrees C for insertion of the G protein into the plasma membrane and virion formation. However, a pseudorevertant of tsO44 (tsO44R), unlike the prototype parent, no longer exhibited this temperature-sensitive requirement for carbohydrate. At 39.5 degrees C in the presence of tunicamycin, tsO44R-infected cells released normal yields of particles and the unglycosylated G reached the cell surface very efficiently. In contrast to tsO110, which absolutely requires carbohydrate, mutational change in the tsO44R G protein has eliminated the requirement for carbohydrate. Thus, simple mutational changes, as opposed to many changes in the molecule, are sufficient to alter the carbohydrate requirement.  相似文献   

18.
Proteoglycan monomer and link protein isolated from the Swarm rat chondrosarcoma both contain glycosylamine-linked oligosaccharides. In monomer, these N-linked oligosaccharides are concentrated in a region of the protein core which interacts specifically with both hyaluronate and link protein to form proteoglycan aggregates present in cartilage matrix. Chondrocyte cultures were treated with tunicamycin to inhibit synthesis of the N-linked oligosaccharides, and the ability of the deficient proteoglycan and link protein to form aggregates was studied. Cultures were pretreated with tunicamycin for 3 h and then labeled with either [3H]mannose, [3H]glucosamine, [3H]serine, or with [35S]sulfate for 6 h in the presence of tunicamycin. Formation of link protein-stabilized proteoglycan aggregates in the culture medium was inhibited by up to 40% when the cells were treated with 3 micrograms of tunicamycin/ml, a concentration which inhibited 3H incorporation with mannose as a precursor by about 90%, but by only 15% with glucosamine as a precursor. When exogenous proteoglycan aggregate was added to the culture medium, however, it was found that both endogenous monomer and link protein synthesized in the presence of tunicamycin were fully able to form link-stabilized aggregates. This suggests that glycosylamine-linked oligosaccharides on monomer and on link protein are not necessary for their specific interactions with hyaluronate and with each other. Further, although tunicamycin did not inhibit net synthesis of hyaluronate, transfer of hyaluronate from the cell layer to the culture medium was retarded. This phenomenon accounted for most if not all of the decrease in the amount of proteoglycan which formed aggregates in the medium of cultures treated with tunicamycin.  相似文献   

19.
A cDNA clone of the mRNA encoding the glycoprotein (G) of vesicular stomatitis virus was inserted into plasmid vectors under the control of either the SV40 early promoter (pSV2G) or the SV40 late promoter (pSVGL). Synthesis of G protein was observed in mouse L cells injected with pSV2G DNA or in COS1 cells transfected with pSVGL DNA. Immunofluorescent staining of G protein produced in both cell types showed a pattern of internal and cell-surface staining indistinguishable from that seen in cells infected with vesicular stomatitis virus. The G protein produced in transfected COS1 cells was the size of normal G protein and was glycosylated. Expression of a G protein lacking 79 amino acids from the COOH terminus was also examined. This G protein lacks the transmembrane domain and the hydrophilic COOH terminus, which, we postulated, anchor G protein in the lipid bilayer. This “anchorless” protein is glycosylated and is secreted, albeit slowly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号