首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The D-group cyclins play a key role in the progression of cells through the G(1) phase of the cell cycle. Treatment of MCF-7 breast cancer cells with the cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) results in rapid down-regulation of cyclin D1 protein expression and growth arrest in the G(0)/G(1) phase of the cell cycle. 15d-PGJ(2) also down-regulates the expression of cyclin D1 mRNA; however, this effect is delayed relative to the effect on cyclin D1 protein levels, suggesting that the regulation of cyclin D1 occurs at least partly at the level of translation or protein turnover. Treatment of MCF-7 cells with 15d-PGJ(2) leads to a rapid increase in the phosphorylation of protein synthesis initiation factor eukaryotic initiation factor 2alpha (eIF-2alpha) and a shift of cyclin D1 mRNA from the polysome-associated to free mRNA fraction, indicating that 15d-PGJ(2) inhibits the initiation of cyclin D1 mRNA translation. The selective rapid decrease in cyclin D1 protein accumulation is facilitated by its rapid turnover (t(1/2) = 34 min) after inhibition of cyclin D1 protein synthesis. The half-life of cyclin D1 protein is not significantly altered in cells treated with 15d-PGJ(2). Treatment of cells with 15d-PGJ(2) results in strong induction of heat shock protein 70 (HSP70) gene expression, suggesting that 15d-PGJ(2) might activate protein kinase R (PKR), an eIF-2alpha kinase shown previously to be responsive to agents that induce stress. 15d-PGJ(2) strongly stimulates eIF-2alpha phosphorylation and down-regulates cyclin D1 expression in a cell line derived from wild-type mouse embryo fibroblasts but has an attenuated effect in PKR-null cells, providing evidence that PKR is involved in mediating the effect of 15d-PGJ(2) on eIF-2alpha phosphorylation and cyclin D1 expression. In summary, treatment of MCF-7 cells with 15d-PGJ(2) results in increased phosphorylation of eIF-2alpha and inhibition of cyclin D1 mRNA translation initiation. At later time points, repression of cyclin D1 mRNA expression may also contribute to the decrease in cyclin D1 protein.  相似文献   

3.
4.
研究小干扰RNA(small interfering RNA,siRNA)对乳腺癌MCF-7细胞株cyclin D1表达的抑制及对细胞增殖的影响。化学合成针对cyclin D1基因的siRNA,转染MCF-7细胞株;分别应用荧光定量PCR和免疫印迹测定cyclin D1 mRNA和蛋白的表达,CCK-8测定细胞的增殖活性,流式细胞仪检测细胞周期,软琼脂培养检测细胞克隆形成能力。在实验中,10、50、100 nmol/L siRNA-cyclin D1分别使MCF-7细胞cyclin D1 mRNA表达降低了57.85%、63.22%和68.02%,蛋白表达降低了51.13%、62.09%、77.68%。转染siRNA-cyclin D1后,细胞增殖受到抑制,细胞周期阻滞于G1期,软琼脂克隆形成率降低。结果提示siRNA可以有效抑制MCF-7细胞株中cyclin D1的表达,使细胞周期阻滞于G1期,从而抑制细胞增殖。  相似文献   

5.
The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.  相似文献   

6.
Fatty acids are endogenous ligands of peroxisome proliferator-activated receptor-alpha (PPARα), which is linked to the regulation of fatty acid uptake, lipid metabolism and breast cancer cell growth. This study was designed to screen candidate fatty acids from breast cancer tissue and to investigate the effects of these candidate fatty acids on PPARα expression, cell growth and cell cycle progression in breast cancer cell lines. One breast cancer tissue and one reference tissue were each taken from 30 individual breasts to examine for fatty acid composition and PPARα expression. The cancer cell lines MDA-MB-231 (ER–), MCF-7 (ER++++) and BT-474 (ER++) were used to explore the mechanisms regulating cell proliferation. We found that arachidonic acid (AA) and PPARα were highly expressed in the breast cancer tissues. AA stimulated the growth of all three breast cancer cells in a time- and dose-dependent manner. The growth stimulatory effect of AA was associated with PPARα activation, and the most potent effect was found in MCF-7 cells. The stimulation of cell proliferation by AA was accompanied by the increased expression of cyclin E, a reduced population of G1 phase cells, and a faster G1/S phase transition. In contrast, AA had no effects on the levels of CDK2, CDK4, cyclin D1, p27, Bcl-2 and Bax. Our results demonstrate that high levels of AA and PPARα expression in human breast cancer tissues are associated with ER-overexpressed breast cancer cell proliferation, which is involved in activating PPARα, stimulating cyclin E expression, and promoting faster G1/S transition.  相似文献   

7.
8.
sp2-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.  相似文献   

9.
Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study further investigated that formononetin inactivated IGF1/IGF1R-PI3K/Akt pathways and decreased cyclin D1 mRNA and protein expression in human breast cancer cells in vitro and in vivo. MCF-7 cells were treated with different concentrations of formononetin. The proliferation of the cells treated with formononetin was tested by MTT assay. The cell cycle in the treated cells was examined by flow cytometry. The levels of p-IGF-1?R, p-Akt, and cyclin D1 protein expression and cyclin D1?mRNA expression in the treated cells were determined by Western blot and RT-PCR, respectively. In addition, the antitumor activity of formononetin was evaluated in nude mice bearing orthotopic tumor implants. Compared with the control, formononetin inhibited the proliferation of MCF-7 cells and effectively induced cell cycle arrest. The levels of p-IGF-1?R, p-Akt, cyclin D1 protein expression, and cyclin D1?mRNA expression were also downregulated. On the other hand, formononetin also prevented the tumor growth of human breast cancer cells in nude mouse xenografts. These results show that formononetin causes cell cycle arrest at the G0/G1 phase by inactivating IGF1/IGF1R-PI3K/Akt pathways and decreasing cyclin D1?mRNA and protein expression, indicating the use of formononetin in the prevention of breast cancer carcinogenesis.  相似文献   

10.
小干扰RNA抑制LRP16基因表达限制了MCF-7乳腺癌细胞增殖   总被引:12,自引:0,他引:12  
雌激素雌二醇上调人乳腺癌细胞MCF 7中LRP16基因表达 ,该基因过表达促进MCF 7细胞增殖 .为进一步探讨LRP16基因不同表达水平对MCF 7细胞增殖的影响以及对雌激素的反应性增殖能力 ,采用针对LRP16基因特异的小干扰RNA策略 ,通过逆转录病毒介导及抗性筛选构建了LRP16基因被稳定抑制的 2个MCF 7细胞系 ,针对绿色荧光蛋白的干扰序列作为阴性对照 .Northern印迹实验检测了LRP16基因在各个细胞株中mNRA的水平 ,与对照组细胞比较 ,针对LRP16基因不同位置的 2个小干扰RNA可分别将该基因抑制 90 %和 6 0 % .细胞增殖试验结果显示 ,MCF 7细胞中LRP16基因表达抑制率越高 ,细胞增殖速率减慢越显著 (P <0 0 5 ) ;软琼脂集落形成试验结果显示 ,抑制LRP16基因在MCF 7细胞中表达 ,限制了细胞锚定非依赖性生长 ;细胞周期分析结果表明 ,LRP16基因抑表达使MCF 7细胞G1 S周期转换受抑 ;Western印迹结果表明 ,LRP16基因表达抑制的细胞中细胞周期蛋白E及细胞周期蛋白D1蛋白水平显著下调 ,但未检测到P5 3及Rb蛋白表达水平的影响 .雌二醇刺激的增殖实验结果显示 ,抑制LRP16基因表达没有消除MCF 7细胞的反应性增殖特征 .上述结果表明 ,LRP16基因表达量与MCF 7细胞增殖能力密切相关 ,抑制其表达可有效限制MCF 7细胞的增殖能力 ,提  相似文献   

11.
Glucose concentration may be an important factor in breast cancer cell proliferation, and the prevalence of breast cancer is high in diabetic patients. Leptin may also be an important factor since plasma levels of leptin correlated with TNM staging for breast cancer patients. The effects of glucose and leptin on breast cancer cell proliferation were evaluated by examining cell doubling time, DNA synthesis, levels of cell cycle related proteins, protein kinase C (PKC) isozyme expression, and peroxisome proliferator-activated receptor (PPAR) subtypes were determined following glucose exposure at normal (5.5 mM) and high (25 mM) concentrations with/without leptin in MCF-7 human breast cancer cells. In MCF-7 cells, leptin and high glucose stimulated cell proliferation as demonstrated by the increases in DNA synthesis and expression of cdk2 and cyclin D1. PKC-alpha, PPARgamma, and PPARalpha protein levels were up-regulated following leptin and high glucose treatment in drug-sensitive MCF-7 cells. However, there was no significant effect of leptin and high glucose on cell proliferation, DNA synthesis, levels of cell cycle proteins, PKC isozymes, or PPAR subtypes in multidrug-resistant human breast cancer NCI/ADR-RES cells. These results suggested that hyperglycemia and hyperleptinemia increase breast cancer cell proliferation through accelerated cell cycle progression with up-regulation of cdk2 and cyclin D1 levels. This suggests the involvement of PKC-alpha, PPARalpha, and PPARgamma.  相似文献   

12.
Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.  相似文献   

13.
14.
CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways.  相似文献   

15.
All-trans retinoic acid (ATRA) can down regulate the anti-apoptotic protein Bcl-2 and the cell cycle proteins cyclin D1 and cdk2 in estrogen receptor-positive breast cancer cells. We show here that retinoids can also reduce expression of the inhibitor of apoptosis protein, survivin. Here we have compared the regulation of these proteins in MCF-7 and ZR-75 breast cancer cells by natural and synthetic retinoids selective for the RA receptors (RARs) alpha, beta, and gamma then correlated these with growth inhibition, induction of apoptosis and chemosensitization to Taxol. In both cell lines ATRA and 9-cis RA induced the most profound decreases in cyclin D1 and cdk2 expression and also mediated the largest growth inhibition. The RARalpha agonist, Ro 40-6055 also strongly downregulated these proteins although did not produce an equivalent decrease in S-phase cells. Only ATRA induced RARbeta expression. ATRA, 9-cis RA and 4-HPR initiated the highest level of apoptosis as determined by mitochondrial Bax translocation, while only ATRA and 9-cis RA strongly reduced Bcl-2 and survivin protein expression. Enumeration of dead cells over 96 h correlated well with downregulation of both survivin and Bcl-2. Simultaneous retinoid-mediated reduction of both these proteins also predicted optimal Taxol sensitization. 4-HPR was much weaker than the natural retinoids with respect to Taxol sensitization, consistent with the proposed requirement for reduced Bcl-2 in this synergy. Neither the extent of cell cycle protein regulation nor AP-1 inhibition fully predicted the antiproliferative effect of the synthetic retinoids suggesting that growth inhibition requires regulation of a spectrum of RAR-regulated gene products in addition even to pivotal cell cycle proteins.  相似文献   

16.
Growth of human breast adenocarcinoma MCF-7 cells as a tumor on nude mice is dependent on estrogen. It has been shown that estrogen withdrawal (EW) induces a partial regression of the tumor via an inhibition of cell proliferation and an induction of apoptosis. We investigated in this in vivo model the underlying molecular mechanisms of the hormone-dependent regulation of cell cycle machinery and apoptosis. We found that, 2 days after EW, the tumor protein levels of p21 rose, whereas those of Rb proteins decreased in parallel with the decrease in the proportion of tumor cells in S phase and the increase of the tumor apoptotic index. Between 3 and 7 days after EW, apoptosis was inhibited and tumor proliferation returned to the control value. There was a concomitant decline in p21 and an elevation of Rb tumor protein content. Slight variations of cyclin D protein level were observed in MCF-7 tumors over the time course following EW treatment. Bcl-2 overexpression not only inhibited apoptosis induced by EW but also modulated hormone-dependent cell cycle regulation. First, the analysis of phosphorylation status of Rb protein and the measurement of the proportion of tumor cells in S phase indicated that Bcl-2 overexpression results in a decrease of DNA synthesis induced by estradiol. Furthermore, after EW, Bcl-2-induced inhibition of hormone-dependent apoptosis was associated with an inhibition of Rb protein downregulation, a sustained level of p21 protein, and a prolonged inhibition of cell cycle progression. These results suggest that, in human hormone-dependent breast cancers, cross-talk exists between the signaling pathways which lead to regulation of cell cycle progression and apoptosis.  相似文献   

17.
siRNA对乳腺癌细胞Cyclin E表达和生长抑制作用   总被引:4,自引:0,他引:4  
研究siRNA对乳腺癌MCF-7细胞株cyclin E表达的抑制及对细胞生长的影响。化学合成针对cyclin E基因的小干扰RNA(siRNA),转染MCF-7细胞株;分别应用荧光定量PCR和免疫印迹测定cyclin E mRNA和蛋白质的表达,CCK-8测定细胞的增殖活性,流式细胞仪检测细胞周期,软琼脂培养检测细胞克隆形成能力。10、50、100nmol/L siRNA-cyclin E分别使MCF-7细胞cyclin E基因表达降低了24.7%、62.5%和71.0%,蛋白质表达降低了40.8%、66.5%和71.3%。转染siRNA-cyclin E后,G1期细胞增多,S期减少,增殖受到抑制,软琼脂克隆形成率降低。结果提示,在MCF-7细胞株中,导入针对cyclin E的siRNA,可有效抑制cyclin E的表达,进而使细胞增殖减缓,逆转其恶性表型。  相似文献   

18.
MicroRNAs (miRs) function as tumor suppressors or oncogenes in multiple tumor types. Although miR expression is tightly regulated, the molecular basis of miR regulation is poorly understood. Here, we investigated the influence of the histone demethylase Jumonji/ARID1 B (JARID1B) on miR regulation in breast tumor cells. In MCF-7 cells with stable RNAi-mediated suppression of JARID1B expression we identified altered regulation of multiple miRs including let-7e, a member of the let-7 family of tumor suppressor miRs. Chromatin immunoprecipitation analysis demonstrated JARID1B binding to the let-7e promoter region as well as removal of the of H3K4me3 histone mark associated with active gene expression. These results suggest that JARID1B epigenetically represses let-7e expression. JARID1B stimulates tumor cell proliferation by promoting the G(1) to S transition. As predicted, suppression of JARID1B resulted in an accumulation of MCF-7 cells in G(1). We confirmed that cyclin D1, which also promotes G(1) progression, is a direct target of let-7e, and we show that cyclin D1 expression is suppressed in JARID1B knockdown cells. Cyclin D1 expression and cell cycle progression were restored following inhibition of let-7e, suggesting that JARID1B repression of let-7e contributes to cyclin D1 expression and JARID1B-mediated cell cycle progression. Our results indicate that the JARID1B demethylase contributes to tumor cell proliferation through the epigenetic repression of a tumor suppressor miR.  相似文献   

19.
Abstract. We investigated the effect of elevated levels of protein kinase Cα (PKCα) on cell proliferation in human breast carcinoma cells (MCF-7). MCF-7 cells transfected with either the pSV2M(2)6 vector without the insert (MCF-7/Vector) or containing a full length cDNA encoding PKCα (MCF-7/PKCα) were compared. MCF-7/PKCα cells were found to have an increased proliferative rate with a doubling time of 15 h as compared to 42 h for MCF-7/Vector cells. Flow cytometry illustrated a greater percentage of MCF-7/PKCα cells in the S phase of the cell cycle. Western and Northern blot analyses demonstrated an increase in extracellular regulated protein kinase 2 (ERK2) gene expression in MCF-7/PKCα cells but no alteration of this gene expression in MCF-7/Vector cells. These results suggested that the elevated level of ERK2 which is also known as mitogen activated protein kinase is probably involved in the increase in MCF-7/PKCα cell proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号