首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecto-phosphorylation is emerging as an important mechanism to regulate cellular ligand interactions and signal transduction. Here we show that extracellular phosphorylation of the cell surface receptor collagen XVII regulates shedding of its ectodomain. Collagen XVII, a member of the novel family of collagenous transmembrane proteins and component of the hemidesmosomes, mediates adhesion of the epidermis to the dermis in the skin. The ectodomain is constitutively shed from the cell surface by metalloproteinases of the ADAM (a disintegrin and metalloproteinase) family, mainly by tumor necrosis factor-alpha converting enzyme (TACE). We used biochemical, mutagenesis, and structural modeling approaches to delineate mechanisms controlling ectodomain cleavage. A standard assay for extracellular phosphorylation, incubation of intact keratinocytes with cell-impermeable [gamma-(32)P]ATP, led to collagen XVII labeling. This was significantly diminished by both broad-spectrum extracellular kinase inhibitor K252b and a specific casein kinase 2 (CK2) inhibitor. Collagen XVII peptides containing a putative CK2 recognition site were phosphorylated by CK2 in vitro, disclosing Ser(542) and Ser(544) in the ectodomain as phosphate group acceptors. Phosphorylation of Ser(544) in vivo and in vitro was confirmed by immunoblotting of epidermis and HaCaT keratinocyte extracts with phosphoepitope-specific antibodies. Functionally, inhibition of CK2 kinase activity or mutation of the phosphorylation acceptor Ser(544) to Ala significantly increased ectodomain shedding, whereas overexpression of CK2alpha inhibited cleavage of collagen XVII. Structural modeling suggested that the phosphorylation of serine residues prevents binding of TACE to its substrate. Thus, extracellular phosphorylation of collagen XVII by ecto-CK2 inhibits its shedding by TACE and represents novel mechanism to regulate adhesion and motility of epithelial cells.  相似文献   

2.
EGF receptor (EGFR) promotes intestinal epithelial restitution, an important early process in the reepithelialization of ulcers. During epithelial restitution, the mechanism of EGFR activation is not known. We evaluated the role of TNF-converting enzyme (TACE), a metalloprotease disintegrin that proteolytically processes plasma membrane-anchored EGFR ligand precursors into their mature active forms, in wound-induced EGFR activation and epithelial restitution. With the use of scrape-wounded rat intestinal epithelial-1 (RIE-1) cell monolayers to model epithelial ulceration and restitution, we observed the rapid wound-dependent release of EGFR ligands into culture medium. RIE-1 cells express TACE, and treatment with phorbol ester, an established TACE stimulus, triggered the extracellular release of an EGFR ligand, transforming growth factor-alpha. Blockade of TACE using TNF processing inhibitor (TAPI-1), a specific hydroxamate inhibitor of metalloprotease disintegrins, prevented release of EGFR ligands from wounded RIE-1 cell monolayers. The restitution of wounded RIE-1 cell monolayers was also dose-dependently inhibited by TAPI-1, establishing the role of metalloprotease disintegrins in this process. These results have established a mechanism of EGFR activation in wounded intestinal epithelium and show an important functional role for metalloprotease disintegrin-mediated ectodomain shedding during intestinal epithelial restitution. Therefore, activation of the TACE-EGFR system might promote the healing of intestinal tract ulcers in patients.  相似文献   

3.
4.
AIM:To determine if the cytotail of the principal sheddase tumor necrosis factor-α converting enzyme (TACE;ADAM17) controls protein ectodomain shedding.METHODS:Site-directed mutagenesis was performed to derive TACE variants. The resulting TACE expression plasmids with amino acid substitutions in the extracel-lular,cysteine-rich disintegrin domain (CRD) and/or deleted cytotail,along with an expression vector for the enhanced green fluorescence protein were transfected into shedding-defective M1 mutants stably expressing transmembrane L-selectin or transforming growth factor (TGF)-α. The expression levels of the TACE substrates at the cell surface were determined by flow cytometry. RESULTS:Consistent with published data,a single point mutation (C600Y) in the CRD led to shedding defi-ciency. However,removal of the cytotail from the C600Y TACE variant partially restored ectodomain cleavage of TGF-α and L-selectin. Cytotail-deleted mutants with any other substituting amino acid residues in place of Cys600 displayed similar function compared with tail-less C600Y TACE.CONCLUSION:The cytotail plays an inhibitory role,which becomes evident when it is removed from an enzyme with another mutation that affects the enzyme function.  相似文献   

5.
Polo-like kinase 3 (Plk3) activation occurs after exposure to environmental or genotoxic stresses. Plk3 regulates cell fate through regulating cell cycle progression. UV irradiation is one of the major environmental stresses that affect corneal epithelial wound healing. In the present study, we report that UV irradiation activated Plk3 and that Plk3 interacts with AP-1 and c-Jun, which appears to be important to mediate corneal epithelial cell apoptosis after UV irradiation. Recombinant Plk3, as well as Plk3 immunoprecipitated from UV-irradiated cells, phosphorylated c-Jun in vitro. The phosphorylation of c-Jun by Plk3 immunoprecipitates was not altered by the pre-removal of JNK from the cell lysates. In addition, the effect of UV irradiation-induced phosphorylation of c-Jun and apoptosis were not significantly affected by knockdown of JNK mRNA. Co-immunoprecipitation reveals that Plk3 and c-Jun directly interacted with each other. Consistently, Plk3 co-localized with c-Jun to the nucleus after UV irradiation. Further, modulating Plk3 activities by overexpressing Plk3 or its mutants significantly affected UV irradiation-induced c-Jun activity and subsequent apoptosis. Our results thus provide for the first time that Plk3 mediates UV irradiation-induced c-Jun activation by phosphorylating c-Jun, suggesting that Plk3 plays an important role in mediating programmed cell death of corneal epithelial cells after UV irradiation.  相似文献   

6.
We examined the stimulus-secretion pathways whereby proteinase-activated receptor 2 (PAR-2) stimulates Cl(-) secretion in intestinal epithelial cells. SCBN and T84 epithelial monolayers grown on Snapwell supports and mounted in modified Ussing chambers were activated by the PAR-2-activating peptides SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2). Short-circuit current (I(sc)) was used as a measure of net electrogenic ion transport. Basolateral, but not apical, application of SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2) caused a concentration-dependent change in I(sc) that was significantly reduced in Cl(-)-free buffer and by the intracellular Ca(2+) blockers thapsigargin and BAPTA-AM, but not by the Ca(2+) channel blocker verapamil. Inhibitors of PKA (H-89) and CFTR (glibenclamide) also significantly reduced PAR-2-stimulated Cl(-) transport. PAR-2 activation was associated with increases in cAMP and intracellular Ca(2+). Immunoblot analysis revealed increases in phosphorylation of epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase, Src, Pyk2, cRaf, and ERK1/2 in response to PAR-2 activation. Pretreatment with inhibitors of cyclooxygenases (indomethacin), tyrosine kinases (genistein), EGFR (PD-153035), MEK (PD-98059 or U-0126), and Src (PP1) inhibited SLIGRL-NH(2)-induced increases in I(sc). Inhibition of Src, but not matrix metalloproteinases, reduced EGFR phosphorylation. Reduced EGFR phosphorylation paralleled the reduction in PAR-2-stimulated I(sc). We conclude that activation of basolateral, but not apical, PAR-2 induces epithelial Cl(-) secretion via cAMP- and Ca(2+)-dependent mechanisms. The secretory effect involves EGFR transactivation by Src, leading to subsequent ERK1/2 activation and increased cyclooxygenase activity.  相似文献   

7.
M Fukuda  Y Gotoh    E Nishida 《The EMBO journal》1997,16(8):1901-1908
The mitogen-activated protein kinase (MAPK) cascade consisting of MAPK and its direct activator, MAPK kinase (MAPKK), is essential for signaling of various extracellular stimuli to the nucleus. Upon stimulation, MAPK is translocated to the nucleus, whereas MAPKK stays in the cytoplasm. It has been shown recently that the cytoplasmic localization of MAPKK is determined by its nuclear export signal (NES) in the near N-terminal region (residues 33-44). However, the mechanism determining the subcellular distribution of MAPK has been poorly understood. Here, we show that introduction of v-Ras, active STE11 or constitutively active MAPKK can induce nuclear translocation of MAPK in mammalian cultured cells. Furthermore, we show evidence suggesting that MAPK is localized to the cytoplasm through its specific association with MAPKK and that nuclear accumulation of MAPK is accompanied by dissociation of a complex between MAPK and MAPKK following activation of the MAPK pathway. We have identified the MAPK-binding site of MAPKK as its N-terminal residues 1-32. Moreover, a peptide encompassing the MAPK-binding site and the NES sequence of MAPKK has been shown to be sufficient to retain MAPK to the cytoplasm. These findings reveal the molecular basis regulating subcellular distribution of MAPK, and identify a novel function of MAPKK as a cytoplasmic anchoring protein for MAPK.  相似文献   

8.
9.
All ligands of the epidermal growth factor receptor (EGFR) which has important roles in development and disease, are shed from the plasma membrane by metalloproteases. The ectodomain shedding of EGFR ligands has emerged as a critical component in the functional activation of EGFR in the interreceptor cross-talk. Identification of the sheddases for EGFR ligands using mouse embryonic cells lacking candidate sheddases (a disintegrin and metalloprotease; ADAM) has revealed that ADAM10, -12 and -17 are the sheddases of the EGFR ligands in response to various shedding stimulants such as GPCR agonists, growth factors, cytokines, osmotic stress, wounding and phorbol ester. Among the EGFR ligands, heparin-binding EGF-like growth factor (HB-EGF) is a representative ligand to understand the pathophysiological roles of the ectodomain shedding in wound healing, cardiac diseases, etc. Here we focus on the ectodomain shedding of HB-EGF by ADAMs, which is not only a key event of receptor cross-talk but also a novel intercellular signaling by the carboxy-terminal fragment (CTF signal).  相似文献   

10.
Nonsynaptic release of ATP from electrically stimulated dorsal root gangion (DRG) axons inhibits Schwann cell (SC) proliferation and arrests SC development at the premyelinating stage, but the specific types of purinergic receptor(s) and intracellular signaling pathways involved in this form of neuron-glia communication are not known. Recent research shows that adenosine is a neuron-glial transmitter between axons and myelinating glia of the CNS. The present study investigates the possibility that adenosine might have a similar function in communicating between axons and premyelinating SCs. Using a combination of pharmacological and molecular approaches, we found that mouse SCs in culture express functional adenosine receptors and ATP receptors, a far more complex array of purinergic receptors than thought previously. Adenosine, but not ATP, activates ERK/MAPK through stimulation of cAMP-linked A2(A) adenosine receptors. Both ATP and adenosine inhibit proliferation of SCs induced by platelet-derived growth factor (PDGF), via mechanisms that are partly independent. In contrast to ATP, adenosine failed to inhibit the differentiation of SCs to the O4+ stage. This indicates that, in addition to ATP, adenosine is an activity-dependent signaling molecule between axons and premyelinating Schwann cells, but that electrical activity, acting through adenosine, has opposite effects on the differentiation of myelinating glia in the PNS and CNS.  相似文献   

11.
Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca(2+) triggers formation of cell-cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca(2+) treatment of keratinocytes induces rapid (6 h) localization of tight junction (TJ) proteins. The kinetics of ILK movement toward the cell periphery mimics that of AJ components, suggesting that ILK plays a role in the early formation of cell-cell contacts. Whereas the N terminus in ILK mediates localization to cell borders, expression of an ILK deletion mutant incapable of localizing to the cell membrane (ILK 191-452) interferes with translocation of E-cadherin/beta-catenin to cell borders, precluding Ca(2+)-induced AJ formation. Cells expressing ILK 191-452 also fail to form TJ and sealed cell-cell borders and do not form epithelial sheets. Thus, we have uncovered a novel role for ILK in epithelial cell-cell adhesion, independent of its well-established role in integrin-mediated adhesion and migration.  相似文献   

12.
13.
Inosine, a naturally occurring purine with anti-inflammatory properties, was assessed as a possible modulator of hyperoxic damage to the pulmonary alveolar epithelium. Rats were treated with inosine, 200 mg/kg ip, twice daily during 48-h exposure to >90% oxygen. The alveolar epithelial type 2 cells (AEC2) were then isolated and cultured. AEC2 isolated from inosine-treated hyperoxic rats had less DNA damage and had increased antioxidant status compared with AEC2 from hyperoxic rats. Inosine treatment during hyperoxia also reduced the proportion of AEC2 in S and G2/M phases of the cell cycle and increased levels of the DNA repair enzyme 8-oxoguanine DNA glycosylase. Bronchoalveolar lavage (BAL) recovered from hyperoxic, inosine-treated rats contained threefold higher levels of active transforming growth factor-beta than BAL from rats exposed to hyperoxia alone, and Smad2 was activated in AEC2 isolated from these animals. ERK1/2 was activated both in freshly isolated and 24-h-cultured AEC2 by in vivo inosine treatment, whereas blockade of the MAPK pathway in vitro reduced the protective effect of in the vivo inosine treatment. Together, the data suggest that inosine treatment during hyperoxic exposure results in protective signaling mediated through pathways downstream of MEK. Thus inosine may deserve further evaluation for its potential to reduce hyperoxic damage to the pulmonary alveolar epithelium.  相似文献   

14.
p38 mitogen‐activated protein kinase (MAPK) is of fundamental importance in a cell's response to environmental stresses, cytokines and DNA damage. p38 resides in the cytoplasm of resting cells, and translocates into the nucleus upon activation, yet the exact mechanisms remain largely unclear. We show here that the phosphorylation‐dependent nuclear translocation of p38 is a common phenomenon when cells are stimulated with various stresses. On the other hand, the nuclear export of p38 requires its dephosphorylation, and it is exported both in a MK2‐dependent and a nuclear export signal (NES)‐independent manner. Although different p38‐regulated/activated protein kinase (PRAK) mutants all dictate the intracellular localization of p38, results from a PRAK‐deficient cell line indicate that it plays no role in this process. Microtubule depolymerizing reagent nocodazole and dynein inhibitor EHNA both block the nuclear translocation of p38, demonstrating roles for microtubules and dynein in p38 transport. Taken together, stress‐induced nuclear accumulation of p38 is a phosphorylation‐dependent, microtubule‐ and dynein‐associated process. J. Cell. Biochem. 110: 1420–1429, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
Expression of the neuropeptide neurotensin (NT) and its high affinity receptor (NTR1) is increased during the course of Clostridium difficile toxin A-induced acute colitis, and NTR1 antagonism attenuates the severity of toxin A-induced inflammation. We recently demonstrated in non-transformed human colonic epithelial NCM460 cells that NT treatment caused activation of a Ras-mediated MAP kinase pathway that significantly contributes to NT-induced interleukin-8 (IL-8) secretion. Here we used NCM460 cells, which normally express low levels of NTR1, and NCM460 cells stably transfected with NTR1 to identify the upstream signaling molecules involved in NT-NTR1-mediated MAP kinase activation. We found that inhibition of the epidermal growth factor receptor (EGFR) by either an EGFR neutralizing antibody or by its specific inhibitor AG1478 (0.2 microm) blocked NT-induced MAP kinase activation. Moreover, NT stimulated tyrosine phosphorylation of the EGFR, and pretreatment with a broad spectrum metalloproteinase inhibitor batimastat reduced NT-induced MAP kinase activation. Using neutralizing antibodies against the EGFR ligands EGF, heparin-binding-EGF, transforming growth factor-alpha (TGFalpha), or amphiregulin we have shown that only the anti-TGFalpha antibody significantly decreases NT-induced phosphorylation of EGFR and MAP kinases. Furthermore, inhibition of the EGF receptor by AG1478 significantly reduced NT-induced IL-8 promoter activity and IL-8 secretion. This is the first report demonstrating that NT binding to NTR1 transactivates the EGFR and that this response is linked to NT-mediated proinflammatory signaling. Our findings indicate that matrix metalloproteinase-mediated release of TGFalpha and subsequent EGFR transactivation triggers a NT-mediated MAP kinase pathway that leads to IL-8 gene expression in human colonic epithelial cells.  相似文献   

17.
18.
19.
20.
Desmosomal cadherins mediate intercellular adhesion and control epithelial homeostasis. Recent studies show that proteinases play an important role in the pathobiology of cancer by targeting epithelial intercellular junction proteins such as cadherins. Here we describe the proinflammatory cytokine-induced activation of matrix metalloproteinase 9 and a disintegrin and metalloproteinase domain–containing protein 10, which promote the shedding of desmosomal cadherin desmoglein-2 (Dsg2) ectodomains in intestinal epithelial cells. Epithelial exposure to Dsg2 ectodomains compromises intercellular adhesion by promoting the relocalization of endogenous Dsg2 and E-cadherin from the plasma membrane while also promoting proliferation by activation of human epidermal growth factor receptor 2/3 signaling. Cadherin ectodomains were detected in the inflamed intestinal mucosa of mice with colitis and patients with ulcerative colitis. Taken together, our findings reveal a novel response pathway in which inflammation-induced modification of columnar epithelial cell cadherins decreases intercellular adhesion while enhancing cellular proliferation, which may serve as a compensatory mechanism to promote repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号