首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two different baculovirus genes are known to be able to block apoptosis triggered upon infection of Spodoptera frugiperda cells with p35 mutants of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcMNPV):p35 (P35-encoding gene) of AcMNPV (R. J. Clem, M. Fechheimer, and L. K. Miller, Science 254:1388-1390, 1991) and iap (inhibitor of apoptosis gene) of Cydia pomonella granulosis virus (CpGV) (N. E. Crook, R. J. Clem, and L. K. Miller, J. Virol. 67:2168-2174, 1993). Using a genetic complementation assay to identify additional genes which inhibit apoptosis during infection with a p35 mutant, we have isolated a gene from Orgyia pseudotsugata NPV (OpMNPV) that was able to functionally substitute for AcMNPV p35. The nucleotide sequence of this gene, Op-iap, predicted a 30-kDa polypeptide product with approximately 58% amino acid sequence identity to the product of CpGV iap, Cp-IAP. Like Cp-IAP, the predicted product of Op-iap has a carboxy-terminal C3HC4 zinc finger-like motif. In addition, a pair of additional cysteine/histidine motifs were found in the N-terminal regions of both polypeptide sequences. Recombinant p35 mutant viruses carrying either Op-iap or Cp-iap appeared to have a normal phenotype in S. frugiperda cells. Thus, Cp-IAP and Op-IAP appear to be functionally analogous to P35 but are likely to block apoptosis by a different mechanism which may involve direct interaction with DNA.  相似文献   

3.
N E Crook  R J Clem    L K Miller 《Journal of virology》1993,67(4):2168-2174
Spodoptera frugiperda SF-21 cells infected with Autographa californica nuclear polyhedrosis virus mutants which lack a functional p35 gene undergo apoptosis, a type of programmed cell death. To identify p35-homologous genes in other baculoviruses, A. californica nuclear polyhedrosis virus DNA containing a deletion in p35 was cotransfected into SF-21 cells along with genomic DNAs from other baculoviruses. One of the viral DNAs which were able to rescue wild-type infection was from Cydia pomonella granulosis virus (CpGV). The CpGV gene responsible for the effect was mapped to a 1.6-kb SalI-SstI subclone of the SalI B fragment of CpGV. The sequence of the SalI-SstI subclone revealed an open reading frame capable of encoding a polypeptide of 31 kDa which was sufficient to rescue wild-type infection; this gene was thus called iap (inhibitor of apoptosis). The predicted sequence of the IAP polypeptide exhibited no significant homology to P35 but contained a zinc finger-like motif which is also found in other genes with the potential to regulate apoptosis, including several mammalian proto-oncogenes and two insect genes involved in embryonic development. In the context of the viral genome, both iap and p35 were able to block apoptosis induced by actinomycin D, indicating that these genes act by blocking cellular apoptosis rather than by preventing viral stimulation of apoptosis. Several independent recombinant viruses derived from cotransfections with either the entire CpGV genome or the 1.6-kb subclone were characterized.  相似文献   

4.
Baculoviruses and apoptosis: the good, the bad, and the ugly   总被引:8,自引:0,他引:8  
Since 1991, when a baculovirus was first shown to inhibit apoptosis of its host insect cells, considerable contributions to our knowledge of apoptosis have arisen from the study of these viruses and the anti-apoptotic genes they encode. Baculovirus anti-apoptotic genes include p35, which encodes the most broadly acting caspase inhibitor protein known, and iap (inhibitor of apoptosis) genes, which were the first members of an evolutionarily conserved gene family involved in regulation of apoptosis and cytokinesis in organisms ranging from yeast to humans. Baculoviruses also provide an ideal system to study the effects of an apoptotic response on viral pathogenesis in an animal host. In this review, I discuss a number of interesting recent developments in the areas of apoptotic regulation by baculoviruses and the effects of apoptosis on baculovirus replication and pathogenesis.  相似文献   

5.
Members of the inhibitor of apoptosis (iap) gene family prevent programmed cell death induced by multiple signals in diverse organisms, suggesting that they act at a conserved step in the apoptotic pathway. To investigate the molecular mechanism of iap function, we expressed epitope-tagged Op-iap, the prototype viral iap from Orgyia pseudotsugata nuclear polyhedrosis virus, by using novel baculovirus recombinants and stably transfected insect cell lines. Epitope-tagged Op-iap blocked both virus- and UV radiation-induced apoptosis. With or without apoptotic stimuli, Op-IAP protein (31 kDa) cofractionated with cellular membranes and the cytosol, suggesting a cytoplasmic site of action. To identify the step(s) at which Op-iap blocks apoptosis, we monitored the effect of Op-iap expression on in vivo activation of the insect CED-3/ICE death proteases (caspases). Op-iap prevented in vivo caspase-mediated cleavage of the baculovirus substrate inhibitor P35 and blocked caspase activity upon viral infection or UV irradiation. However, unlike the stoichiometric inhibitor P35, Op-IAP failed to affect activated caspase as determined by in vitro protease assays. These findings provide the first biochemical evidence that Op-iap blocks activation of the host caspase or inhibits its activity by a mechanism distinct from P35. Moreover, as suggested by the capacity of Op-iap to block apoptosis induced by diverse signals, including virus infection and UV radiation, iap functions at a central point at or upstream from steps involving the death proteases.  相似文献   

6.
The baculovirus inhibitor of apoptosis gene, iap, can impede cell death in insect cells. Here we show that iap can also prevent cell death in mammalian cells. The ability of iap to regulate programmed cell death in widely divergent species raised the possibility that cellular homologs of iap might exist. Consistent with this hypothesis, we have isolated Drosophila and human genes which encode IAP-like proteins (dILP and hILP). Like IAP, both dILP and hILP contain amino-terminal baculovirus IAP repeats (BIRs) and carboxy-terminal RING finger domains. Human ilp encodes a widely expressed cytoplasmic protein that can suppress apoptosis in transfected cells. An analysis of the expressed sequence tag database suggests that hilp is one of several human genes related to iap. Together these data suggest that iap and related cellular genes play an evolutionarily conserved role in the regulation of apoptosis.  相似文献   

7.
杆状病毒凋亡抑制基因的研究进展   总被引:2,自引:0,他引:2  
杆状病毒(bacu lovirus)感染昆虫细胞能引起细胞凋亡,但在长期进化过程中,杆状病毒可通过自身编码凋亡抑制基因的表达,抑制细胞凋亡以利于自己的增殖。目前在杆状病毒基因组中已发现两种不同类型的细胞凋亡抑制基因p35/p49和iap,这两类凋亡抑制基因分别作用于细胞凋亡途径的不同位点,以抑制细胞的凋亡。近年来人们对这两种基因的蛋白结构及作用机制等方面进行了大量的研究,这些为今后研究昆虫细胞凋亡,扩大杆状病毒宿主范围等方面奠定了基础。  相似文献   

8.
We report the identification of four additional genes of the Autographa californica nuclear polyhedrosis virus involved in expression from a late baculovirus promoter in transient expression assays. Three of these genes, p35, 39K, and p47, have been previously described. The role of the p35 gene product in late gene expression may be related to its ability to block apoptosis, since two other baculovirus genes also known to block apoptosis, Cp-iap and Op-iap, were able to functionally replace p35 in the transient expression assay. The requirement for p47 in this assay confirms its role in late gene expression, a role previously established by characterization of a temperature-sensitive mutant of p47, while the requirement for 39K may be related to its known association with the virogenic stroma. The fourth gene identified as a late expression factor gene, lef-11, was located immediately upstream of 39K and is predicted to encode a 13-kDa polypeptide. When plasmids containing these 4 genes were cotransfected with plasmids containing the 14 genes previously identified as late gene expression factors, the level of expression from the late capsid promoter was similar to that observed for a library of clones representing the entire viral genome. The genes provided by these 18 plasmids thus represent the viral genes necessary and sufficient to support expression from a late viral promoter in this transient expression assay.  相似文献   

9.
10.
昆虫杆状病毒细胞凋亡抑制基因   总被引:1,自引:0,他引:1  
杆状病毒感染过程中,可能会诱导产生一条导致细胞凋亡的路径,细胞凋亡是一种程序性细胞死亡。宿主细胞的凋亡可以导致细胞的提前死亡或感染的终止,因此细胞凋亡可以限制病毒在被感染机体中的扩散或限制感染机体的发病。家蚕的杆状病毒拥有两种对抗细胞凋亡死亡的基因,p35和iap(inhibitorofapoptosis),它们可能通过阻止病毒感染引起的细胞凋亡或存在于大量生物体内的各种诱导信号引起的细胞凋亡。  相似文献   

11.
《Seminars in Virology》1998,8(6):445-452
The baculovirus AcMNPV induces apoptosis in a host-specific manner which involves the activation of host caspases (cysteine-dependent, aspartate-specific proteases). AcMNPV carries a novel gene, p35, which encodes a stoichiometric inhibitor of active caspases, thereby blocking apoptosis. P35 is cleaved by caspases and the cleavage products form a stable complex with the caspase. Baculoviruses also carry genes known as iaps (inhibitors of apoptosis), some of which can actively suppress apoptosis by inhibiting the activation of caspases. Members of the IAP family are found in both viral and animal genomes and interact physically with a variety of proteins associated with apoptotic pathways including Reaper, Doom, TRAF2, and some caspases. The ability of baculoviruses to block apoptosis influences their pathogenicity and host range.  相似文献   

12.
The baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) possesses two genes, iap1 and iap2, which encode inhibitor of apoptosis (IAP) proteins. We previously showed that although both genes are dispensable for viral propagation, iap2 is required for efficient viral propagation in cultured cells. BmNPV IAP2 contains three putative functional domains: a baculovirus IAP repeat (BIR), a BIR-like (BIRL) domain, and a RING finger domain. To identify the domain affecting viral growth, we generated a series of BmNPV bacmids expressing iap2 derivatives lacking one or two domains, or possessing a single amino acid substitution to abolish IAP2 ubiquitin ligase activity. We examined their properties in both cultured cells and B. mori larvae. We found that either the BIR or BIRL domain of IAP2 plays an important role in BmNPV infection, and that the RING finger domain, which is required for ubiquitin ligase activity, does not greatly contribute to BmNPV propagation. This is the first study to identify functional domains of the baculovirus IAP2 protein.  相似文献   

13.
Evidence for Agrobacterium-induced apoptosis in maize cells   总被引:10,自引:0,他引:10  
Agrobacterium spp. can genetically transform most dicotyledonous plant cells whereas many monocot species are recalcitrant to Agrobacterium-mediated transformation. One major obstacle is that co-cultivation of Agrobacterium spp. with plant tissues often results in cell death. Report here is that, in maize tissues, this process resembles apoptosis, with characteristic DNA cleavage into oligonucleosomal fragments and morphological changes. Two anti-apoptotic genes from baculovirus, p35 and iap, had the ability to prevent the onset of apoptosis triggered by Agrobacterium spp. in maize tissues. p35 is reported to act as a direct inhibitor of a certain class of proteases (caspase) whereas i.a.p. may act upstream to prevent their activation. This evidence raises the possibility that caspase-like proteases may also be involved in the apoptotic pathway in plant cells.  相似文献   

14.
Two antiapoptotic types of genes, iap and p35, were found in baculoviruses. P35 is a 35-kDa protein that can suppress apoptosis induced by virus infection or by diverse stimuli in vertebrates or invertebrates. iap homologues were identified in insects and mammals. Recently, we have identified sl-p49, a novel apoptosis suppressor gene and the first homologue of p35, in the genome of the Spodoptera littoralis nucleopolyhedrovirus. Here we show that sl-p49 encodes a 49-kDa protein, confirmed its primary structure that displays 48.8% identity to P35, and performed computer-assisted modeling of P49 based on the structure of P35. We demonstrated that P49 is able to inhibit insect and human effector caspases, which requires P49 cleavage at Asp(94). Finally we identified domains important for P49's antiapoptotic function that include a reactive site loop (RSL) protruding from a beta-barrel domain. RSL begins at an amphipathic alpha1 helix, traverses the beta-sheet central region, exposing Asp(94) at the apex, and rejoins the beta-barrel. Our model predicted seven alpha-helical motifs, three of them unique to P49. alpha-Helical motifs alpha(1), alpha(2), and alpha(4') were required for P49 function. The high structural homology between P49 and P35 suggests that these molecules bear a scaffold common to baculovirus "apoptotic suppressor" proteins. P49 may serve as a novel tool to analyze the contribution of different components of the caspase chain in the apoptotic response in organisms not related phylogenetically.  相似文献   

15.
Programmed cell death, or apoptosis, occurs throughout the course of normal development in most animals and can also be elicited by a number of stimuli such as growth factor deprivation and viral infection. Certain morphological and biochemical characteristics of programmed cell death are similar among different tissues and species. During development of the nematode Caenorhabditis elegans, a single genetic pathway promotes the death of selected cells in a lineally fixed pattern. This pathway appears to be conserved among animal species. The baculovirus p35-encoding gene (p35) is an inhibitor of virus-induced apoptosis in insect cells. Here we demonstrate that expression of p35 in C. elegans prevents death of cells normally programmed to die. This suppression of developmentally programmed cell death results in appearance of extra surviving cells. Expression of p35 can rescue the embryonic lethality of a mutation in ced-9, an endogenous gene homologous to the mammalian apoptotic suppressor bcl-2, whose absence leads to ectopic cell deaths. These results support the hypothesis that viral infection can activate the same cell death pathway as is used during normal development and suggest that baculovirus p35 may act downstream or independently of ced-9 in this pathway.  相似文献   

16.
The Autographa californica nucleopolyhedrovirus (AcMNPV) contains three apoptosis suppressor genes: p35, iap1 and iap2. AcMNPV P35 functions as a pancaspase inhibitor, but the function of IAP1 and IAP2 has not been entirely resolved. In this paper, we analyze the function of IAP1 and IAP2 in de-tail. AcMNPV with p35-deletion inhibited the apoptosis of BTI-Tn-5B1-4 (Tn-Hi5) cells induced by a Helicoverpa armigera single nucleocapsid NPV (HearNPV) infection and rescued the replication of HearNPV and BV production in these cells. Transient-expression experiments indicated that both IAP1 and IAP2 suppress apoptosis of Tn-Hi5 cells during HearNPV infection. Recombinant HearNPVs ex-pressing AcMNPV iap1, iap2 and p35, respectively, not only prevented apoptosis but also allowed HearNPV to replicate in Tn-Hi5 cells. However, the iap1, iap2 and p35 genes when expressed in HearNPV were unable to rescue BV production. These results indicate that both AcMNPV iap1 and iap2 function independently as apoptosis inhibitors of and are potential host range factors.  相似文献   

17.
The prototype baculovirus, Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) expresses p35, a potent anti cell-death gene that promotes the propagation of the virus by blocking host cell apoptosis. Infection of insect Sf-21 cells with AcMNPV lacking p35 induces apoptosis. We have used this pro-apoptotic property of the p35 null virus to screen for genes encoding inhibitors of apoptosis that rescue cells infected with the p35 defective virus. We report here the identification of Tn-IAP1, a novel member of the IAP family of cell death inhibitors. Tn-IAP1 blocks cell death induced by p35 null AcMNPV, actinomycin D, and Drosophila cell-death inducers HID and GRIM. Given the conserved nature of the cell death pathway, this genetic screen can be used for rapid identification of novel inhibitors of apoptosis from diverse sources.  相似文献   

18.
Infection with the wild-type baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) results in complete death of Spodoptera frugiperda (Sf) cells. However, infection of Sf cells with AcMNPV carrying a mutation or deletion of the apoptotic suppressor gene p35 allowed the cloning of surviving Sf cells that harbored persistent viral genomes. Persistent infection established with the virus with p35 mutated or deleted was blocked by stable transfection of p35 in the host genome or by insertion of the inhibitor of apoptosis (iap) gene into the viral genome. These artificially established persistently virus-infected cells became resistant to subsequent viral challenge, and some of the cell lines carried large quantities of viral DNA capable of early gene expression. Continuous release of viral progenies was evident in some of the persistently virus-infected cells, and transfection of p35 further stimulated viral activation of the persistent cells, including the reactivation of viruses in those cell lines without original continuous virus release. These results have demonstrated the successful establishment of persistent baculovirus infections under laboratory conditions and that their establishment may provide a novel continuous, nonlytic baculovirus expression system in the future.  相似文献   

19.
While studying apoptosis induced by baculovirus transactivator IE1 in SF-21 cells, we found that the levels of IE1-induced apoptosis were increased approximately twofold upon cotransfection with the baculovirus early pe38 gene. However, no apoptotic activity was observed in cells transfected with pe38 alone, even when placed under the control of a constitutive promoter. Thus, pe38 was able to augment IE1-induced apoptosis but was unable to induce apoptosis when expressed in SF-21 cells alone. PE38, the full-length product of pe38, is a nuclear protein with RING finger and leucine zipper motifs. Deletion of the amino-terminal region, which contains a putative nuclear localization motif, resulted in cytoplasmic localization of the PE38 mutants. These N-terminal deletion mutants were unable to enhance IE1-induced apoptosis. Mutation of a single conserved leucine (L242) of the leucine zipper motif also eliminated the ability of PE38 to augment apoptosis induced by IE1. In contrast, PE38 mutants with alanine substitutions for conserved cysteine residues (C109 or C138) of the RING finger motif were able to increase IE1-induced apoptosis to levels equivalent to those of wild-type PE38. We propose that PE38 is one of at least two viral factors which collectively evoke a cellular apoptotic response during baculovirus infection.  相似文献   

20.
Caspases, a family of cysteine proteases, are critical mediators of apoptosis. To address the importance of caspases in thymocyte development, we have generated transgenic mice that express the baculovirus protein p35, a viral caspase inhibitor, specifically in the thymus. p35 expression inhibited Fas (CD95)-, CD3-, or peptide-induced caspase activity in vitro and conferred resistance to Fas-induced apoptosis. However, p35 did not block specific peptide-induced negative selection in OT1 and HY TCR transgenic mouse models. Even the potent pharmacological caspase inhibitor zVAD-FMK (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone) could not prevent peptide-induced deletion of OT1 thymocytes, although it improved basal thymocyte survival in vitro. Moreover, the developmental block observed in rag1-/- thymocytes, which lack pre-TCR signaling, was also not rescued by p35 expression. These results indicate that caspase-independent signal transduction pathways can mediate thymocyte death during normal T cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号