首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A total of 30 actins from various chordate and invertebrate muscle sources were either characterized by full amino acid sequence data or typed by those partial sequences in the NH2-terminal tryptic peptide which are known to be specific markers for different actin isoforms. The results show that most, if not all, invertebrate muscle actins are homologous to each other and to the isoforms recognized as vertebrate cytoplasmic actins. In contrast the actin forms typically found in muscle cells of warm-blooded vertebrates are noticeably different from invertebrate muscle actins and seem to have appeared in evolution already with the origin of chordates. During subsequent vertebrate evolution there has been a high degree of sequence conservation similar or stronger than that seen in histone H4. Urochordates, Cephalochordates and probably also Agnathes express only one type of muscle actin. Two types, a striated muscle-specific form and a smooth muscle form, are already observed in Chondrichthyes and Osteichthyes. Later in evolution, with the origin of reptiles, both muscle actins seem to have duplicated again; the striated muscle type branched into a skeletal- and cardiac-specific form, while the smooth muscle form duplicated into a vascular- and stomach-specific type. These findings support the hypothesis that each of the four muscle actins of warm-blooded vertebrates are coded for by a small number and possibly only one functional gene.  相似文献   

2.
Summary The presence and distribution pattern of paramyosin have been examined in different invertebrate muscle cell types by means of Western blot analysis and electron microscopy immunogold labelling. the muscles studied were: transversely striated muscle with continuous Z lines (flight muscle fromDrosophila melanogaster), transversely striated muscle with discontinuous Z lines (heart muscle from the snailHelix aspersa), obliquely striated body wall muscle from the earthwormEisenia foetida, and smooth muscles (retractor muscle from the snail and pseudoheart outer muscular layer from the earthworm). Paramyosin-like immunoreactivity was localized in thick filaments of all muscles studied. Immunogold particle density was similar along the whole thick filament length in insect flight muscle but it predominated in filament tips of fusiform thick filaments in both snail heart and earthworm body wall musculature when these filaments were observed in longitudinal sections. In obliquely sectioned thick filaments, immunolabelling was more abundant at the sites where filaments disappeared from the section. These results agree with the notion that paramyosin extended along the whole filament length, but that it can only be immunolabelled when it is not covered by myosin. In all muscles examined, immunolabelling density was lower in cross-sectioned myofilaments than in longitudinally sectioned myofilaments. This suggests that paramyosin does not form a continuous filament. The results of a semiquantitative analysis of paramyosin-like immunoreactivity indicated that it was more abundant in striated than in smooth muscles, and that, within striated muscles, transversely striated muscles contain more paramyosin than obliquely striated muscles.  相似文献   

3.
Summary Invertebrate actins resemble vertebrate cytoplasmic actins, and the distinction between muscle and cytoplasmic actins in invertebrates is not well established as for vertebrate actins. However, Bombyx and Drosophila have actin genes specifically expressed in muscles. To investigate if the distinction between muscle and cytoplasmic actins evidenced by gene expression analysis is related to the sequence of corresponding genes, we compare the sequences of actin genes of these two insect species and of other Metazoa. We find that insect muscle actins form a family of related proteins characterized by about 10 muscle-specific amino acids. Insect muscle actins have clearly diverged from cytoplasmic actins and form a monophyletic group emerging from a cluster of closely related proteins including insect and vertebrate cytoplasmic actins and actins of mollusc, cestode, and nematode. We propose that muscle-specific actin genes have appeared independently at least twice during the evolution of animals: insect muscle actin genes have emerged from an ancestral cytoplasmic actin gene within the arthropod phylum, whereas vertebrate muscle actin genes evolved within the chordate lineage as previously described.Offprint requests to.: N. Mounier  相似文献   

4.
By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunodiffusion, we identified paramyosin in two smooth invertebrate "catch" muscles (Mytilus anterior byssus retractor and Mercenaria opaque adductor) and five invertebrate striated muscles (Limulus telson levator, Homarus claw muscle, Balanus scutal depressor, Lethocerus air tube retractor, and Aequipecten striated adductor). We show that (a) the paramyosins in all of these muscles have the same chain weights and (b) they are immunologically similar. We stained all of these muscles with specific antibody to Limulus paramyosin using the indirect fluorescent antibody technique. Paramyosin was localized to the A bands of the glycerinated striated muscles, and diffus fluorescence was seen throughout the glycerinated fibers of the smooth catch muscles. The presence of paramyosin in Homarus claw muscle, Balanus scutal depressor, and Lethocerus air tube retractor is shown here for the first time. Of the muscles in this study, Limulus telson levator is the only one for which the antiparamyosin staining pattern has been previously reported.  相似文献   

5.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal. The two smooth muscle actins--bovine aorta actin and chicken gizzard actin--differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared. In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably cloer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

6.
The protein chemical characterization of the amino-terminal tryptic peptide of actin from different bovine tissues shows that at least six different actin structural genes are expressed in this mammal.Unique amirio acid sequences are found for actin from skeletal muscle, for actin from heart muscle, for two different actin species from smooth muscle, and for two different actin species typical of non-muscle tissues such as brain and thymus. The presence of more than one actin species in the same tissue (e.g. nonmuscle tissues and smooth muscles) is demonstrated by different amino-terminal peptides which, however, are closely related. The actins from the sarcomeric muscles (e.g. skeletal muscle and heart muscle) show unique but extremely similar amino-terminal peptides. A limited comparison of bovine and avian actins involving smooth and skeletal muscles emphasizes that among higher vertebrates actin divergence involves tissue rather than species specificity.For the lower eukaryotic organism Physarum polycephalum a single actin amino-terminal peptide is found, indicating that only one actin species is present during the plasmodial stage. The amino acid sequence of this peptide although unique reveals a high degree of homology with the corresponding mammalian cytoplasmic actin peptides.Different actin extraction and purification procedures have been compared by the relative yields of the different amino-terminal peptides. The results indicate that the various actin species obtained by the current purification procedures are a true reflection of the actual actins present in the tissue. In addition we compare the resolution provided by either isoelectric focusing analysis of different actins or by the protein chemical characterization of the amino-terminal peptides of different actins. We show that the latter procedure is more suitable for recording changes in actin expression during evolution and differentiation.  相似文献   

7.
An activating factor for the superprecipitation of actomyosin reconstructed from scallop smooth muscle myosin and rabbit skeletal muscle F-actin was purified from thin filaments of scallop smooth and striated muscles. Two components were obtained from the smooth muscle and one from the striated muscle. All three components similarly affected the actomyosin ATPase activity. According to the results of analysis involving double reciprocal plotting of the ATPase activity versus F-actin concentration, the activating factor for superprecipitation decreased the apparent dissociation constants of actomyosin about 30 to 110 times. The activation of the superprecipitation by the factor, therefore, may be due to the enhancement of the affinity between F-actin and myosin in the presence of ATP. The activating factor was identified as tropomyosin based on it mobility on polyacrylamide gel electrophoresis and on the recovery of the Ca2+-sensitivity of purified rabbit skeletal actomyosin in the presence of troponin.  相似文献   

8.
It has been demonstrated that embryonic chicken gizzard smooth muscle contains a unique embryonic myosin light chain of 23,000 mol wt, called L23 (Katoh, N., and S. Kubo, 1978, Biochem. Biophys. Acta, 535:401-411; Takano-Ohmuro, H., T. Obinata, T. Mikawa, and T. Masaki, 1983, J. Biochem. (Tokyo), 93:903-908). When we examined myosins in developing chicken ventricular and pectoralis muscles by two-dimensional gel electrophoresis, the myosin light chain (Le) that completely comigrates with L23 was detected in both striated muscles at early developmental stages. Two monoclonal antibodies, MT-53f and MT-185d, were applied to characterize the embryonic light chain Le of striated muscles. Both monoclonal antibodies were raised to fast skeletal muscle myosin light chains; the former antibody is specific to fast muscle myosin light chains 1 and 3, whereas the latter recognizes not only fast muscle myosin light chains but also the embryonic smooth muscle light chain L23. The immunoblots combined with both one- and two-dimensional gel electrophoresis showed that Le reacts with MT-185d but not with MT-53f. These results strongly indicate that Le is identical to L23 and that embryonic chicken skeletal, cardiac, and smooth muscles express a common embryo-specific myosin light chain.  相似文献   

9.
The tissue and developmental specificities of the three Drosophila isoactins, originally identified in primary myogenic cultures and in the permanent Schneider L-2 cell line, have been investigated. Of these three isoactins (I, II, and III), actins I and II are stable and actin III is unstable. Two-dimensional polyacrylamide gel electrophoretic analyses of total cellular extracts after 1-h [(35)S]methionine pulses were performed on a large variety of embryonic, larval, and adult muscle and nonmuscle tissues. The results suggest that isoactins II and III are generalized cellular actins found in all drosophila cell types. Actin I, on the other hand, is muscle-associated and is found exclusively in supercontractile muscle (such as larval body wall and larval and adult viscera) including primary myogenic cell cultures. Although actin I synthesis is not detectable during very early embryogenesis, it is detectable by 25 h and actin I is a major stable actin in all larval muscle tissues. Actin I is synthesized in reduced amounts relative to the other actins in late third instar larvae but is again a major product of actin synthesis in the adult abdomen. A stable actin species with the same pI as actin III has been identified in the adult thorax and appears to be unique to flight muscle tissue. This new stable form of thoracic actin may be the result of a stabilization of the actin III found in other tissues or may be an entirely separate gene product.  相似文献   

10.
Using an SDS gel electrophoresis method, connectin, very high molecular weight (approximately 10(6) dalton) protein, was detected in an SDS extract of whole tissues of various types of muscles of vertebrates and invertebrates. Connectin bands were clearly recognized in all the types of striated muscles (skeletal and cardiac) of the vertebrates examined: rabbit, chicken, turtle, snake, newt, frog, and fish. This was also the case with skeletal muscle of prochordate, Amphioxus. In invertebrates, the situation was much complicated. Connectin-like protein bands were detected in C. elegans (nematode), but not in earthworm (annelid). Smaller sizes of proteins (approximately 10(6)) were faintly found in molluscan adductor muscles. In arthropods, connectin-like proteins were clearly detected in some muscles (e.g., claw muscles of crab and crayfish; leg muscles of several insects) but not at all in other muscles (e.g., tail muscles of crayfish and shrimp; thoracic muscles of some insects). These peculiar observations might be related to the presence of such specific elastic proteins as projectin in honeybee flight muscle. The present study has revealed that connectin is an elastic protein of vertebrate striated muscle, skeletal and cardiac muscles.  相似文献   

11.
Muscle tissues can be divided into six classes; smooth, fast skeletal, slow skeletal and cardiac muscle tissues for vertebrates, and striated and smooth muscle tissues for invertebrates. We reconstructed phylogenetic trees of six protein genes that are expressed in muscle tissues and, using a newly developed program, inferred the phylogeny of muscle tissues by superimposition of five of those gene trees. The proteins used are troponin C, myosin essential light chain, myosin regulatory light chain, myosin heavy chain, actin, and muscle regulatory factor (MRF) families. Our results suggest that the emergence of skeletal-cardiac muscle type tissues preceded the vertebrate/arthropod divergence (ca. 700 MYA), while vertebrate smooth muscle seemed to evolve independent of other muscles. In addition, skeletal muscle is not monophyletic, but cardiac and slow skeletal muscles make a cluster. Furthermore, arthropod striated muscle, urochordate smooth muscle, and vertebrate muscles except for smooth muscle share a common ancestor. On the other hand, arthropod nonmuscle and vertebrate smooth muscle and nonmuscle share a common ancestor.  相似文献   

12.
Using affinity chromatography on DNAase I-Sepharose, an actin-like protein was isolated from rat liver mitochondria and purified 60-fold. SDS electrophoresis in polyacrylamide gel revealed that the protein migrated with muscle actin and thus had the molecular weight of 42 000 Da. Evidence for the actin-like nature of the mitochondrial protein could be obtained from the fact that the protein inhibited the activity of pancreatic DNAase I which, similar to the smooth muscle protein, was less conspicuous than that of its muscle counterpart. Unlike striated muscle actin but similar to the smooth muscle protein, the mitochondrial actin weakly stimulated the Mg-ATPase activity of rabbit skeletal muscle myosin. After manyfold washing of the mitochondria with isotonic isolation media, the content of the actin-like protein remained unchanged, which indirectly points to the presence of insignificant cytoplasmic actin contaminations. During isoelectrofocusing, the mitochondrial actin-like protein yielded two forms, i. e., beta- and gamma-isoactins, whose ratio was 8:1. The pI values for the beta- and gamma-isoforms were 5.52 and 5.59, respectively. The identical position of the absorption spectra (260 nm) and fluorescence excitation spectra (around 280 nm) maxima of the actin-like protein and smooth and skeletal muscle actins testify to their homology.  相似文献   

13.
We have investigated whether living muscle and nonmuscle cells can discriminate between microinjected muscle and nonmuscle actins. Muscle actin purified from rabbit back and leg muscles and labeled with fluorescein isothiocyanate, and nonmuscle actin purified from lamb brain and labeled with lissamine rhodamine B sulfonyl chloride, were co-injected into chick embryonic cardiac myocytes and fibroblasts. When fluorescence images of the two actins were compared using filter sets selective for either fluorescein isothiocyanate or lissamine rhodamine B sulfonyl chloride, essentially identical patterns of distribution were detected in both muscle and nonmuscle cells. In particular, we found no structure that, at this level of resolution, shows preferential binding of muscle or nonmuscle actin. In fibroblasts, both actins are associated primarily with stress fibers and ruffles. In myocytes, both actins are localized in sarcomeres. In addition, the distribution of structures containing microinjected actins is similar to that of structure containing endogenous F-actin, as revealed by staining with fluorescent phalloidin or phallacidin. Our results suggest that, at least under these experimental conditions, actin-binding sites in muscle and nonmuscle cells do not discriminate among different forms of actins.  相似文献   

14.
Antibodies were formed against the myosin light chains isolated from chicken fast skeletal, slow skeletal, and cardiac muscle and the antigenicities of the light chains were compared by double immunodiffusion and immunoelectrophoresis. It was shown that fast light chains are immunologically different from light chains of slow and cardiac myosin, while the slow and cardiac muscle light chains have similar immunological characteristics; that is, the light chains of apparent molecular weight about 27,000 daltons in SDS-acrylamide gel electrophoresis of slow and cardiac muscle are immunologically indistinguishable, and the other light chains of apparent molecular weight about 19,000 daltons of both muscles include a common antigenic site.  相似文献   

15.
1. Actins were purified from camel brain, skeletal muscle and heart muscle and their properties were compared. 2. Individual actins were homogeneous and comigrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 3. Isoelectric focusing analysis of camel skeletal muscle and heart muscle actin showed a single polypeptide of the alpha-species, while camel brain actin showed two polypeptides of the beta- and gamma-species typical of non-muscle actin. 4. Actins from camel skeletal muscle and heart muscle showed a greater degree of similarity to each other and to rabbit skeletal muscle actin and showed some differences from camel brain actin, as confirmed by amino acid analysis and one-dimensional peptide mapping.  相似文献   

16.
A Ca2+-activated proteolytic enzyme that partially degrades myofibrils was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibrils prepared from muscles from vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and alpha-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occurring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additonally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

17.
Beta-actinin isoforms in various types of muscle and non-muscle tissues   总被引:1,自引:0,他引:1  
We found that beta-actinin isoforms are present in various types of tissues in adult chicken by using immunoblotting after two dimensional gel electrophoresis; for this purpose, an antibody was raised against beta-actinin purified from adult chicken breast muscle (pectoralis major). One of the beta-actinin subunits, beta I, was present in all tissues we examined, i.e. skeletal (pectoralis major, semitendinosus, and anterior latissimus dorsi), cardiac, and smooth (gizzard) muscles, non-muscle (brain, liver, and kidney) tissues and blood, whereas another subunit, beta II, was present only in muscle tissues. A new subunit (designated beta III) that was found in the embryonic stages of skeletal muscle (Asami, Funatsu & Ishiwata (1988) J. Biochem. 103, 72-75) was present instead of beta II in non-muscle tissues and blood. In cardiac and smooth muscles, beta III coexisted with beta I and beta II. The antibody of beta-actinin did not cross-react to cytoplasmic beta-actinin (molecular weight, 80,000 daltons) found in kidney. It was suggested that the combination of beta I and beta III present in non-muscle tissues and blood is identical to the barbed end capping protein isolated from brain by Killiman and Isenberg (EMBO J. 1, 889-894 (1982)). It is likely that beta-actinin forms a genetic family whose constituents have an ability to cap either the pointed or barbed end of actin filaments.  相似文献   

18.
Actin and tropomyosin variants in smooth muscles. Dependence on tissue type   总被引:12,自引:0,他引:12  
Actin was found to be the major source of myofibrillar protein heterogeneity in smooth muscles. Three isoelectric variants, alpha-smooth muscle (alpha-SM), beta-non-muscle (beta-NM), and gamma-actins (gamma-SM and gamma-NM) were measured in 15 different smooth muscles, alpha-SM and gamma-actin contents displayed an inverse relationship in a given smooth muscle, some of which contained primarily alpha-SM actin while gamma-actins dominated in others. alpha-SM actin and gamma-actin distributions were tissue-specific, independent of species. A greater proportion of alpha-SM actin appears to be associated with tissues having a high degree of tonic activity. beta-Nonmuscle actin was a significant, and relatively constant, component of all smooth muscle tissues. The high NM-actin content of these tissues may reflect the importance of proliferative, synthetic, or secretory activities in smooth muscle, because the alpha-SM actin disappeared in tissue culture with a time course paralleling the modulation of phenotype from a contractile to a proliferative cell. Two tropomyosin subunits were present in approximately equal amounts in all smooth muscle tissues studied. One tropomyosin subunit exhibited identical mobility on two-dimensional gel electrophoresis, while the other was characterized by some species-specific variation which was unrelated to actin variant distribution. No variants of the 20,000-dalton regulatory light chain of myosin were observed. These results suggest that SM-specific actin variants are associated with functional diversity among smooth muscles.  相似文献   

19.
A series of 14 primary and two metastatic rat rhabdomyosarcomas (RMS) induced with nickel sulfide was studied by light microscopy, transmission electron microscopy, indirect immunofluorescence, avidin-biotin-peroxidase immunohistochemistry and two-dimensional gel electrophoresis. Monoclonal or affinity-purified polyclonal antibodies were used for the immunohistochemical demonstration of vimentin, desmin, alpha-smooth muscle (alpha-sm) actin and alpha-sarcomeric (alpha-sr) actin. By histological and ultrastructural studies, four categories of RMS were diagnosed on the basis of the neoplastic cell types. These were: (1) well-differentiated RMS (n = 2), (2) pleomorphic RMS (n = 8), (3) embryonal RMS (n = 4), and (4) embryonal myosarcomas (n = 2). Immunohistochemically, all these neoplasms expressed desmin and alpha-sr actin, reflecting their rhabdomyoblastic origin. Two dimensional gel electrophoresis performed on five neoplasms demonstrated alpha, beta and gamma actins spots in all cases. This study demonstrates that the alpha-sr actin antibody represents a good marker for rhabdomyoblastic differentiation is useful in the diagnosis of RMS since it was present in all morphologically confirmed RMS and in two ultrastructurally undifferentiated sarcomas positive for desmin. Neoplastic cells positive for alpha-sm actin were noted in 11 confirmed RMS. Double indirect immunofluorescence showed that all alpha-sm and alpha-sr positive cells also contained desmin. Co-expression of alpha-sr and alpha-sm actins was studied in serial sections of formalin-fixed, paraffin-embedded tumor tissue. Both alpha-sm and alpha-sr actins were localized in some rhabdomyoblasts. This study confirms our previous observations in human tumors and shows, for the first time, that alpha-sr and alpha-sm actins can be present in the same neoplastic cell in vivo.  相似文献   

20.
Crude actin extracts from acetone-dried powder of the muscle layer of bovine aorta contain an actin-modulating protein which promotes nucleation of actin monomers and decreases the average length of actin filaments in a Ca2+-dependent manner. This observation has allowed the development of an improved purification procedure for aorta actin which increases the yield 2- to 3-times. The actin obtained with this procedure consists of 77% alpha- and 23% gamma-isoelectric species. Pure aorta actin is indistinguishable from actins from skeletal, cardiac and chicken-gizzard smooth muscle in its polymerization rate, critical concentration, and reduced viscosity when polymerized with KCl at 25 degrees C. It differs from sarcomeric actins, but not from chicken-gizzard smooth muscle actin, in the temperature dependence of polymerization equilibria in KCl. This difference correlates with the amino acid replacements Val-17----Cys-17 and Thr-89----Ser-89, supporting a conclusion drawn from other studies that the N-terminal portion of actin polypeptide chain contains sites important for polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号