首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The pigmented epithelium of Rana pipiens tadpole eyes normally develops at least two types of melanosomes: (1) an elongated melanin granule of relatively homogeneous electron density, and (2) a complex melanosome which has an outer electrondense area and one or more less dense cores. Evidence indicates that complex melanosomes are formed by new melanin enclosing preexisting melanosomes. An organized fibrillar premelanosome is demonstrated with the aid of the antimelanogenic compound phenylthiourea (PTU). These premelanosomes are the developing forms of the elongated melanosomes. There is evidence that the premelanosomes originate in the smooth endoplasmic reticulum. Phenylthiourea blocks melanin synthesis in the premelanosomes; however, removal of the PTU allows pigment deposition. This finding of an organized, fibrillar premelanosome in an amphibian marks the lowest phylogenetic group in which these organelles have been described.An Oak Ridge Graduate Fellow from Catholic University of America, Washington, D.C., under appointment from Oak Ridge Associated Universities.The MAN Program is supported by the National Cancer Institute, the National Institute of General Medical Sciences, the National Institute of Allergy and Infectious Diseases, and the U.S. Atomic Energy Commission.Oak Ridge National Laboratory is operated by Union Carbide Corporation Nuclear Division for the U.S. Atomic Energy Commission.  相似文献   

2.
Melastomataceae sensu stricto (excluding Memecylaceae) comprise some 3000 species in the neotropics, 1000 in Asia, 240 in Africa, and 230 in Madagascar. Previous family-wide morphological and DNA analyses have shown that the Madagascan species belong to at least three unrelated lineages, which were hypothesized to have arrived by trans-oceanic dispersal. An alternative hypothesis posits that the ancestors of Madagascan, as well as Indian, Melastomataceae arrived from Africa in the Late Cretaceous. This study tests these hypotheses in a Bayesian framework, using three combined sequence datasets analysed under a relaxed clock and simultaneously calibrated with fossils, some not previously used. The new fossil calibration comes from a re-dated possibly Middle or Upper Eocene Brazilian fossil of Melastomeae. Tectonic events were also tentatively used as constraints because of concerns that some of the family's fossils are difficult to assign to nodes in the phylogeny. Regardless of how the data were calibrated, the estimated divergence times of Madagascan and Indian lineages were too young for Cretaceous explanations to hold. This was true even of the oldest ages within the 95% credibility interval around each estimate. Madagascar's Melastomeae appear to have arrived from Africa during the Miocene. Medinilla, with some 70 species in Madagascar and two in Africa, too, arrived during the Miocene, but from Asia. Gravesia, with 100 species in Madagascar and four in east and west Africa, also appears to date to the Miocene, but its monophyly has not been tested. The study afforded an opportunity to compare divergence time estimates obtained earlier with strict clocks and single calibrations, with estimates based on relaxed clocks and different multiple calibrations and taxon sampling.  相似文献   

3.
4.
While spontaneous tumours may occasionally develop in inbred and isogenic strains of Xenopus laevis, the South African clawed toad, they are extremely rare in natural and laboratory populations. Only two amphibian neoplasms, the renal adenocarcinoma of Rana pipiens and the lymphosarcoma of Xenopus laevis, have been extensively explored. Amphibians are resistant to the development of neoplasia, even following exposure to "direct-acting" chemical carcinogens such as N-methyl-N-nitrosourea, that are highly lymphotoxic, thus diminishing immune reactivity. Regenerative capacity in adults, and a dramatic metamorphosis which remodels much of the larval body to produce the adult form, are unique to amphibian vertebrates, and the control mechanisms involved may protect against cancer. For example, naturally rising corticosteroid titres during metamorphosis will impair some T-cell functions, and the removal of T-regulatory (suppressor) functions inhibits the induction of altered-self tolerance. Altered-self tolerance is not as effectively induced in adult Xenopus laevis as in mammals, so cancer cells with new antigenicity are more likely be rejected in amphibians. Amphibian immunocytes tend to undergo apoptosis readily in vitro, and, unlike mammalian immunocytes, undergo apoptosis without entering the cell cycle. Cells not in the cell cycle that die from nuclear damage (apoptosis), will have no opportunity to express genetic instability leading to cell transformation. We suggest that all these factors, rather than any one of them, may reduce susceptibility to cancer in amphibians.  相似文献   

5.
Pheromonal communication is widespread in salamanders and newts and may also be important in some frogs and toads. Several amphibian pheromones have been behaviorally, biochemically and molecularly identified. These pheromones are typically peptides or proteins. Study of pheromone evolution in plethodontid salamanders has revealed that courtship pheromones have been subject to continual evolutionary change, perhaps as a result of co-evolution between the pheromonal ligand and its receptor. Pheromones are detected by the vomeronasal organ and main olfactory epithelium. Chemosensory neurons express vomeronasal receptors or olfactory receptors. Frogs have relatively large numbers of vomeronasal receptors that are transcribed in both the vomeronasal organ and the main olfactory epithelium. Salamander vomeronasal receptors apparently are restricted to the vomeronasal organ. To date, no chemosensory ligands have been matched to vomeronasal receptors or olfactory receptors so it is unknown whether particular receptor types are (1) specialized for detection of pheromones versus other chemosignals, or (2) specialized for detection of volatile, nonvolatile, or water-borne chemosignals. Despite progress in understanding amphibian pheromonal communication, only a small fraction of amphibian species have been examined. Study of additional species of amphibians will indicate which traits related to pheromonal communication are evolutionarily conserved and which traits have diverged over time.  相似文献   

6.
7.
8.
The Black Rat (Rattus rattus) spread out of Asia to become one of the world's worst agricultural and urban pests, and a reservoir or vector of numerous zoonotic diseases, including the devastating plague. Despite the global scale and inestimable cost of their impacts on both human livelihoods and natural ecosystems, little is known of the global genetic diversity of Black Rats, the timing and directions of their historical dispersals, and the risks associated with contemporary movements. We surveyed mitochondrial DNA of Black Rats collected across their global range as a first step towards obtaining an historical genetic perspective on this socioeconomically important group of rodents. We found a strong phylogeographic pattern with well-differentiated lineages of Black Rats native to South Asia, the Himalayan region, southern Indochina, and northern Indochina to East Asia, and a diversification that probably commenced in the early Middle Pleistocene. We also identified two other currently recognised species of Rattus as potential derivatives of a paraphyletic R. rattus. Three of the four phylogenetic lineage units within R. rattus show clear genetic signatures of major population expansion in prehistoric times, and the distribution of particular haplogroups mirrors archaeologically and historically documented patterns of human dispersal and trade. Commensalism clearly arose multiple times in R. rattus and in widely separated geographic regions, and this may account for apparent regionalism in their associated pathogens. Our findings represent an important step towards deeper understanding the complex and influential relationship that has developed between Black Rats and humans, and invite a thorough re-examination of host-pathogen associations among Black Rats.  相似文献   

9.

Background

Female sperm storage has evolved independently multiple times among vertebrates to control reproduction in response to the environment. In internally fertilising amphibians, female salamanders store sperm in cloacal spermathecae, whereas among anurans sperm storage in oviducts is known only in tailed frogs. Facilitated through extensive field sampling following historical observations we tested for sperm storing structures in the female urogenital tract of fossorial, tropical caecilian amphibians.

Findings

In the oviparous Ichthyophis cf. kohtaoensis, aggregated sperm were present in a distinct region of the posterior oviduct but not in the cloaca in six out of seven vitellogenic females prior to oviposition. Spermatozoa were found most abundantly between the mucosal folds. In relation to the reproductive status decreased amounts of sperm were present in gravid females compared to pre-ovulatory females. Sperm were absent in females past oviposition.

Conclusions

Our findings indicate short-term oviductal sperm storage in the oviparous Ichthyophis cf. kohtaoensis. We assume that in female caecilians exhibiting high levels of parental investment sperm storage has evolved in order to optimally coordinate reproductive events and to increase fitness.  相似文献   

10.
Diseases of amphibians   总被引:3,自引:0,他引:3  
The development and refinement of amphibian medicine comprise an ongoing science that reflects the unique life history of these animals and our growing knowledge of amphibian diseases. Amphibians are notoriously fastidious in terms of captive care requirements, and the majority of diseases of amphibians maintained in captivity will relate directly or indirectly to husbandry and management. Investigators have described many infectious and noninfectious diseases that occur among various species of captive and wild amphibians, and there is considerable overlap in the diseases of captive versus free-ranging populations. In this article, some of the more commonly reported infectious and noninfectious diseases as well as their etiological agents and causative factors are reviewed. Some of the more common amphibian diseases with bacterial etiologies include bacterial dermatosepticemia or "red leg syndrome," flavobacteriosis, mycobacteriosis, and chlamydiosis. The most common viral diseases of amphibians are caused by the ranaviruses, which have an impact on many species of anurans and caudates. Mycotic and mycotic-like organisms cause a number of diseases among amphibians, including chytridiomycosis, zygomycoses, chromomycoses, saprolegniasis, and ichthyophoniasis. Protozoan parasites of amphibians include a variety of amoeba, ciliates, flagellates, and sporozoans Common metazoan parasites include various myxozoans, helminths (particularly trematodes and nematodes), and arthropods. Commonly encountered noninfectious disease etiologies for amphibians include neoplasia, absolute or specific nutritional deficiencies or overloads, chemical toxicities, and inadequate husbandry or environmental management.  相似文献   

11.
Curtis R Altmann  Esther Bell  Ali H Brivanlou 《Genome biology》2000,1(5):reports4022.1-reports40223
A report on the Eighth Biannual Xenopus Conference, Estes Park, Colorado, August 16-20, 2000.  相似文献   

12.
13.
Rather than being a static, species specific trait, reproductive behavior in female amphibians is variable within an individual during the breeding season when females are capable of reproductive activity. Changes in receptivity coincide with changes in circulating estrogen. Estrogen is highest at the point when females are ready to choose a male and lay eggs. At this time female receptivity (her probability of responding to a male vocal signal) is highest and her selectivity among conspecific calls (measured by her probability of responding to a degraded or otherwise usually unattractive male signal) is lowest. These changes occur even though females retain the ability to discriminate different acoustic characteristics of various conspecific calls. After releasing her eggs, female amphibians quickly become less receptive and more choosy in terms of their responses to male sexual advertisement signals. Male vocal signals stimulate both behavior and estrogen changes in amphibian females making mating more probable. The changes in female reproductive behavior are the same as those generally accepted as indicative of a change in female sexual arousal leading to copulation. They are situationally triggered, gated by interactions with males, and decline with the consummation of sexual reproduction with a chosen male. The changes can be triggered by either internal physiological state or by the presence of stimuli presented by males, and the same stimuli change both behavior and physiological (endocrine) state in such a way as to make acceptance of a male more likely. Thus amphibian females demonstrate many of the same general characteristics of changing female sexual state that in mammals indicate sexual arousal.  相似文献   

14.
Generalized anuran tadpoles across families exhibit a similar neuromast morphology on their heads, as follows: (1) all neuromast lines known for anurans are present; (2) within these lines total neuromast number ranges from about 250 to 320; (3) neuromasts form linear stitches composed of two to three, but sometimes up to five, neuromasts; (4) neuromast linear dimensions are ? 10 μm; and (5) neuromasts contain ? 15 hair cells. Compared with generalized forms, stream, arboreal, carnivorous, and desert-pond forms have fewer neuromasts but they contain more hair cells. They do not, however, form stitches. Obligate midwater suspension-feeding forms, including Xenopus (Pipidae), Rhinophrynus (Rhinophyrnidae), and Phrynomerus (Microhylidae), form stitches that contain > six, but potentially up to 18 or more, loosely aggregated neuromasts. Xenopus and Rhinophrynus have large neuromasts (up to 40 μm across). Chiasmocleis (Microhylidae) tadpoles form stiches that are linearly arranged with up to ten neuromasts. Whereas urodeles can have more than one neuromast row per line and may form both linear and transverse stitches, anurans have only one row of neuromasts per line and form only transverse stitches. Neuromasts in anurans tend to be smaller and more circular than in urodeles and positioned flush with the epidermal surface. A greater percentage of anurans form stitches, and anurans have greater intrafamilial variation in stitch formation than do urodeles.  相似文献   

15.
16.
Principal events in the early embryonic development of the nervous system, from neurulation to primary differentiation, are considered in different amphibian species. Attention is paid to numerous interspecific differences in the structure of neuroepithelium and the patterns of neurulation and embryonic brain segmentation. The data presented indicate that similarity in brain developmental patterns is apparently explained by universality of morphogenetic mechanisms rather than by the common origin of particular species. A hypothesis is proposed that similarity in the shape of the developing amphibian brain is determined by mechanisms of coding positional information necessary for histogenetic differentiation.  相似文献   

17.
The three orders of extant amphibians are Gymnophiona, Anura, and Urodela. Although all gymnophionans apparently have internal fertilization and many are viviparous, female sperm storage is unknown. Internal fertilization has convergently evolved in a few anurans, but females of just one species, Ascaphus truei, are known to possess oviductal sperm storage tubules (SSTs). The SSTs of A. truei are similar anatomically to such glands in squamate reptiles. This similarity is convergence due to similar functional adaptations and/or internal design constraints. In salamanders and newts (Urodela), absence of sperm storage in females is the ancestral condition (three families). In the derived condition, sperm storage occurs in cloacal glands called spermathecae, and their possession is a synapomorphy for females in the suborder Salamandroidea (seven families). Salamandroids are the only vertebrates with cloacal sperm storage glands. In this paper, a phenetic analysis of variation in spermathecal characters reveals patterns of convergence in certain spermathecal characters in unrelated taxa that breed in similar habitats. In the family Salamandridae, a role in sperm nutrition for the spermathecal epithelium is questioned, and the widespread occurrence of spermiophagy is related to other reproductive strategies. I propose how the packaging of sperm in structurally different types of spermathecae may influence male paternity.  相似文献   

18.
Induction is a process in which the developmental pathway of one cell is controlled by signals emitted from another. Mesoderm induction is the first inductive interaction in theXenopus enbryo and probably occurs in all vertebrates. It is a very important event as it is implicated in the regulation of morphogenesis. Nieuwkoop first demonstrated the importance of vegetal endoderm in inducing the mesoderm. Slack and co-workers incorporated the information obtained from experimental embryology in a “three signal” model for mesoderm induction in amphibians (signals arising from ventral vegetal hemisphere, dorsal vegetal hemisphere and the organizer). More recent research has resulted in the detection of mesoderm inducing factors which are members of FGF and TGF--β families. Activin, a member of the TGF-β family, has been shown to induce differential gene expression and cell differentiation in a concentration-dependent manner giving credence to the theory of morphogen gradients. Study of mesoderm induction in the chick embryo is much more difficult due to several reasons. Novel experimental approaches, however, have been used which point to the role of activin and FGF in chick mesoderm induction. The demonstration of mesoderm inducing activity of activin and FGF in other groups of vertebrates, particularly the chick embryo brings out the possibility of a universal mechanism of mesoderm induction being operative in all the vertebrates.  相似文献   

19.
Sound source perception refers to the auditory system's ability to parse incoming sensory information into coherent representations of distinct sound sources in the environment. Such abilities are no doubt key to successful communication in many taxa, but we know little about their function in animal communication systems. For anuran amphibians (frogs and toads), social and reproductive behaviors depend on a listener's ability to hear and identify sound signals amid high levels of background noise in acoustically cluttered environments. Recent neuroethological studies are revealing how frogs parse these complex acoustic scenes to identify individual calls in noisy breeding choruses. Current evidence highlights some interesting similarities and differences in how the auditory systems of frogs and other vertebrates (most notably birds and mammals) perform auditory scene analysis.  相似文献   

20.
A third immunoglobulin class in amphibians   总被引:3,自引:0,他引:3  
A new class of immunoglobulin (IgX) has been found in the South African frog, Xenopus laevis, and other related species. IgX can be immunoprecipitated by monoclonal antibodies directed against determinants found on Xenopus light chain, or on variable regions of heavy chains. Reagents specific for the heavy chain of IgM or the amphibian IgG equivalent, IgY, failed to react with IgX. IgX, which exists in serum as a polymer, is composed of subunits of disulfide-bonded heavy chains of 80,000 daltons and light chains of 25,000 to 29,000 daltons. Like mu, the heavy chain of IgX carries a large amount of asparagine-linked carbohydrate, but the partial peptide maps of the two are different. Although the concentration of IgX varies greatly in the serum of individual frogs, it is always secreted in cultures of cells from the spleen and intestinal mucosae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号