首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Progranulin (pgrn; granulin-epithelin precursor, PC-cell-derived growth factor, or acrogranin) is a multifunctional secreted glycoprotein implicated in tumorigenesis, development, inflammation, and repair. It is highly expressed in macrophage and monocyte-derived dendritic cells. Here we investigate its regulation in myeloid cells. All-trans retinoic acid (ATRA) increased pgrn mRNA levels in myelomonocytic cells (CD34(+) progenitors; monoblastic U-937; monocytic THP-1; progranulocytic HL-60; macrophage RAW 264.7) but not in nonmyeloid cells tested. Interleukin-4 impaired basal expression of pgrn in U-937. Differentiation agents DMSO, and, in U-937 only, phorbol ester [phorbol 12-myristate,13-acetate (PMA)] elevated pgrn mRNA expression late in differentiation, suggestive of roles for pgrn in more mature terminally differentiated granulocyte/monocytes rather than during growth or differentiation. The response of pgrn mRNA to ATRA differs in U-937 and HL-60 lineages. In U-937, ATRA and chemical differentiation agents greatly increased pgrn mRNA stability, whereas, in HL-60, ATRA accelerated pgrn mRNA turnover. The initial upregulation of pgrn mRNA after stimulation with ATRA was independent of de novo protein synthesis in U-937 but not HL-60. Chemical blockade of nuclear factor-kappaB (NF-kappaB) activation impaired ATRA-stimulated pgrn expression in HL-60 but not U-937, whereas in U-937 it blocked PMA-induced pgrn mRNA expression, suggestive of cell-specific roles for NF-kappaB in determining pgrn mRNA levels. We propose that: 1) ATRA regulates pgrn mRNA levels in myelomonocytic cells; 2) ATRA acts in a cell-specific manner involving the differential control of mRNA stability and differential requirement for NF-kappaB signaling; and 3) elevated pgrn mRNA expression is characteristic of more mature cells and does not stimulate differentiation.  相似文献   

2.
3.
4.
5.
6.
7.
The human myeloid cell nuclear differentiation antigen (MNDA) is expressed constitutively in cells of the myeloid lineage, appearing in myeloblast cells in some cases of acute myeloid leukemia and consistently being detected in promyelocyte stage cells as well as in all later stage cells including peripheral blood monocytes and granulocytes. The human myeloid leukemia cell lines, HL-60, U937, and THP-1, express similar levels of immunochemically detectable MNDA. Although, the level of MNDA mRNA in primary monocytes is very low it was up-regulated at 6 h following the addition of interferon α. The effect of interferon α on the MNDA mRNA is also observed in the cell lines HL-60, U937, and THP-1. The MNDA mRNA level in primary granulocytes was unaffected by addition of interferon α and other agents including interferon γ, endotoxin, poly (I) · poly (C), and FMLP. The MNDA mRNA level in the myeloid cell lines was also unaffected by the latter four agents. Induction of differentiation in the myeloid cell lines with phorbol ester induces monocyte differentiation which was accompanied by a decrease in MNDA mRNA level. This reduced level of mRNA could then be elevated with subsequent interferon α treatment. The effects of phorbol ester on MNDA mRNA appeared to be associated with induced differentiation since inhibiting cell proliferation did not alter the level of MNDA mRNA and cell cycle variation in MNDA mRNA levels were not observed. The ability of interferon α to up-regulate MNDA mRNA in phorbol ester treated myeloid cell lines is consistent with the observations made in primary monocytes. Granulocyte differentiation induced by retinoic acid treatment of HL-60 cells did not alter the MNDA mRNA level which was also unchanged following subsequent treatment with interferon α. The lack of interferon α effects on retinoic acid treated HL-60 cells is consistent with its inability to influence MNDA mRNA level in primary granulocytes.  相似文献   

8.
9.
10.
11.
12.
Tumor necrosis factor-alpha (TNFalpha) critically regulates several cellular functions during monocyte/macrophage differentiation. We therefore investigated during the phorbol ester (phorbol 12-myristate 13-acetate (PMA))-induced monocyte/macrophage differentiation of the human HL-60 leukemia cells, if TNFalpha contributed to plasminogen activator inhibitor type-1 (PAI-1) synthesis that is initiated by a protein kinase Cbeta-extracellular signal-regulated kinase 2-dependent pathway (Lopez, S., Peiretti, F., Morange, P., Laouar, A., Fossat, C., Bonardo, B., Huberman, E., Juhan-Vague, I., and Nalbone, G. (1999) Thromb. Haemostasis 81, 415-422). Following PMA treatment, the level of TNFalpha mRNA strongly increased and appeared earlier than PAI-1 mRNA. An anti-TNFalpha antibody significantly inhibited the PMA-induced PAI-1 mRNA and protein levels. The recombinant human TNFalpha, which is inactive on native HL-60 cells in terms of PAI-1 synthesis, optimally potentiates it once HL-60 cells are committed into the differentiation process. The use of 1) the HL-525 cell line, a clone issued from HL-60 cells rendered resistant to PMA-induced differentiation, and 2) the transforming growth factorbeta-1/vitamin D3 differentiative mixture confirmed the relationships between the induction of differentiation and the potency of TNFalpha to up-regulate PAI-1 synthesis. In conclusion, we showed that during the induction of monocyte/macrophage differentiation, TNFalpha and PAI-1 gene expressions are activated and that synthesized TNFalpha up-regulates and prolongs, in an autocrine manner, the synthesis of PAI-1.  相似文献   

13.
14.
A new endogenous differentiating factor (myelopeptide-4) for myeloid cells   总被引:2,自引:0,他引:2  
Along with known lymphokines involved in the regulation of hematopoiesis, a new differentiating factor (myelopeptide-4, MP-4) for myeloid cells was found. The peptide (Phe-Arg-Pro-Arg-Ile-Met-Thr-Pro) originally isolated from the culture medium of porcine bone marrow cell culture was examined for its ability to induce differentiation in two human myeloid leukemia cell lines, HL-60 and K-562. Agents with well-known differentiation-inducing activity, such as phorbol myristate acetate, dimethylsulfoxide and the lymphokines were used as a reference. It has been shown that MP-4 significantly influences the integral characteristics of metabolism, expression of surface antigens and morphology of these cells. It decreased the level of chromosomal DNA synthesis and, in parallel, increased the total protein synthesis in both HL-60 and K-562 cells. MP-4 induced the expression of CD14 monocyte-specific surface antigen and the appearance of mature monocytes/macrophages in HL-60 cell cultures. There was a good correlation of cell metabolic/morphological changes and the CD14 marker expression for HL-60 cells. A similar phenomenon was observed in K-562 cells treated with MP-4 when the levels of hemoglobin synthesis were detected in their cytoplasm. Thus, we consider MP-4 as a new endogenous differentiating factor for myeloid cells.  相似文献   

15.
16.
Wang Q  Li N  Wang X  Shen J  Hong X  Yu H  Zhang Y  Wan T  Zhang L  Wang J  Cao X 《Life sciences》2007,80(5):420-429
We report here the molecular cloning and characterization of a novel human gene (hMYADM) derived from a human bone marrow stromal cell (BMSC) cDNA library, which shares high homology with mouse myeloid-associated differentiation marker (MYADM). hMYADM is also closely related to many other eukaryotic proteins, which together form a novel and highly conserved MYADM-like family. hMYADM with 322-residue protein contains eight putative transmembrane segments and confocal microscopic analysis confirmed its membrane localization by using anti-hMYADM monoclonal antibody. hMYADM mRNA was selectively expressed in human monocytes, dendritic cells, promyeloid or monocytic leukemia cell lines, but not in CD4+, CD8+, CD19+ cells, nor in T cell leukemia or lymphocytic leukemia cell lines. hMYADM expression was also found in normal human bone marrow enriched for CD34+ stem cells, and the expression was up-regulated when these cells were induced to differentiate toward myeloid cells. The mRNA expression level of hMYADM significantly increased in acute promyelocytic leukemia HL-60 and chronic myelogenous leukemia K562 cell line after phorbol myristate acetate (PMA)-induced differentiation. Our study suggests that hMYADM is selectively expressed in myeloid cells, and involved in the myeloid differentiation process, indicating that hMYADM may be one useful membrane marker to monitor stem cell differentiation or myeloid leukemia differentiation.  相似文献   

17.
18.
19.
20.
We characterized the surface antigen and mRNA expression for the CD11c (alpha X, p150) subunit of the human leukocyte adherence receptor family during hematopoietic cell differentiation. The CD11c subunit antigen and mRNA are constitutively expressed in undifferentiated HL-60 promyelocytic leukemia cells, and levels increase markedly with differentiation along the monocyte/macrophage pathway using phorbol myristate acetate. Human monocyte-derived macrophages and human alveolar macrophages express elevated levels of the CD11c subunit antigen and mRNA, indicating that the changes observed in vitro are present in vivo. Dot blot analysis of immature and mature lymphoid and myeloid cells and cell lines demonstrate equivalent levels of CD11c mRNA expression. We conclude that CD11c gene expression is selectively increased during hematopoietic cell differentiation along the monocyte/macrophage pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号