首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive, selective and efficient reversed-phase high-performance liquid chromatographic (HPLC) method is reported for the determination of furosemide in human plasma and urine. The method has a sensitivity limit of 5 ng/ml in plasma, with acceptable within- and between-day reproducibilities and good linearity (r2>0.99) over a concentration range from 0.05 to 2.00 μg/ml. The one-step extract of furosemide and the internal standard (warfarin) from acidified plasma or urine was eluted through a μBondapak C18 column with a mobile phase composed of 0.01 M potassium dihydrogenphosphate and acetonitrile (62:38, v/v) adjusted to pH 3.0. Within-day coefficients of variation (C.V.s) ranged from 1.08 to 8.63% for plasma and from 2.52 to 3.10% for urine, whereas between-day C.V.s ranged from 4.25 to 10.77% for plasma and from 5.15 to 6.81% for urine at three different concentrations. The minimum quantifiable concentration of furosemide was determined to be 5 ng/ml. The HPLC method described has the capability of rapid and reproducible measurement of low levels of furosemide in small amounts of plasma and urine. This method was utilized in bioavailability/pharmacokinetic studies for the routine monitoring of furosemide levels in adults, children and neonate patients.  相似文献   

2.
An automated high-performance liquid chromatographic method for the determination of the diuretic drug furosemide has been established. Dog plasma was injected directly into a two-column system with a BSA—ODS (ODS column coated with bovine serum albumin) precolumn and a C18 analytical column for the separation of furosemide. The two columns were automatically switched. Furosemide remained trapped on the precolumn while proteins were eluted to waste. After column switching, furosemide was washed onto the analytical column and analysed without interference. The greatest advantage of the method is its easy performance without manual sample preparation; it requires no extraction or deproteinization. The method allows determination of 0.1–10 μg/ml of furosemide with accuracy and precision comparable with previously reported values. The coefficients of variation obtained from replicate measurements of 1 μg/ml and 5 μg/ml samples were 1.65% and 2.40%, respectively. This method was used to measure the plasma levels of furosemide in beagle dogs to whom the drugs was administered, as a reference, in a toxicological study.  相似文献   

3.
A high-performance liquid chromatographic method was developed for the determination of a new non-narcotic analgesic, DA-5018 (I), in rat plasma, urine and bile samples, using propranolol for plasma samples and protriptyline for urine and bile samples as internal standards. The method involved extraction followed by injection of 100 μl of the aqueous layer onto a C18 reversed-phase column. The mobile phases were 5 mM methanesulfonic acid with 10 mM NaH2PO4 (pH 2.5)-acetonitrile, 70:30 (v/v) for plasma samples and 75:25 (v/v) for urine and bile samples. The flow-rates were 1.0 ml/min for plasma samples and 1.2 ml/min for urine and bile samples. The column effluent was monitored by a fluorescence detector with an excitation wavelength of 270 nm and an emission wavelength of 330 nm. The retention time for I was 4.8 min in plasma samples and 10.0 min in urine and bile samples. The detection limits for I in rat plasma, urine and bile were 20, 100 and 100 ng/ml, respectively. There was no interference from endogenous substances.  相似文献   

4.
A high-performance liquid chromatographic method with electrochemical detection (ED) has been developed for the determination of two diuretics: 4-phenoxy-3-(1-pyrrolidinyl)-5-sulfamoylbenzoic acid (piretanide) and 4-chloro-2-furfurylamino-5-sulfamoylbenzoic acid (furosemide). The chromatographic separation was performed on a μBondapak C18 column with a mobile phase of acetonitrile-water (40:60) containing 5 mM KH2PO4/K2HPO4 and with a flow-rate of 1 ml/min (69 bar). The temperature was optimized at 30 ± 0.2°C. The amperometric detector equipped with a glassy carbon electrode was operated at + 1200 mV versus Ag/AgCl in the direct current mode. The method was applied to the determination of these compounds in two concentration ranges (ppm and ppb), obtaining a reproducibility in terms of relative standard deviations lower than 1% for within-day and 4% for day-to-day and determination limits of 15 ppb for both compounds. Recoveries greater than 90% were obtained for spiked urine samples, using a liquid-liquid extraction method in the sample clean-up procedure. The LC-ED method was applied to commercially available pharmaceuticals (Seguril, furosemide 40 mg, and Perbilén, piretanide 6 mg) and urine samples obtained from healthy volunteers and hypertensive patients.  相似文献   

5.
Direct injection high-performance liquid chromatographic (HPLC) methods with column switching and UV detection were developed for the rapid and accurate determination of S-1090 in human plasma and urine. An internal-surface reversed-phase pre-column and a C18 analytical column were used for the plasma assay. Two pre-columns packed with cyano and phenyl materials and a C18 analytical column were used for the urine assay. The calibration curves for plasma and urine assays were linear in the ranges 0.09–9 μg/ml and 0.5–100 μg/ml of S-1090, respectively. The relative standard deviations for plasma and urine assays were less than 6% with low relative errors. The established HPLC methods were demonstrated to be useful for clinical pharmacokinetic studies after oral administration of S-1090.  相似文献   

6.
A high-performance liquid chromatographic method for the measurement of bumetamide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol—water—glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5–2000 ng/ml.  相似文献   

7.
A high-performance liquid chromatographic method has been developed for the determination of a new cephalosporin antibiotic in plasma, urine and saliva (mixed saliva) using normal-phase technique and an NH2 bonded-phase column. The eluent mixture was a combination of acetonitrile and an aqueous solution of ammonium carbonate. The rapid method involved precipitation of protein from fluids by means of acetonitrile followed by automatic injection of the supernatant. The detection limit was 0.4 μg/ml for plasma, 3 μg/ml for urine and 0.03 μg/ml for saliva using UV detection.  相似文献   

8.
A sensitive, selective, and rapid high-performance liquid chromatographic procedure was developed for the determination of isoxicam in human plasma and urine. Acidified plasma or urine were extracted with toluene. Portions of the organic extract were evaporated to dryness, the residue dissolved in tetrahydrofuran (plasma) or acetonitrile (urine) and chromatographed on a μBondapak C18 column preceded by a 4–5 cm × 2 mm I.D. column packed with Corasil C18. Quantitation was obtained by UV spectrometry at 320 nm. Linearity in plasma ranged from 0.2 to 10 μg/ml. Recoveries from plasma samples seeded with 1.8, 4 and 8 μg/ml isoxicam were 1.86 ± 0.077, 4.10 ± 0.107 and 8.43 ± 0.154 μg/ml with relative standard deviations of 3.3%, 2.5% and 5.4%, respectively. The linearity in urine ranged from 0.125 to 2 μg/ml. The precision of the method was 3.3–9.0% relative standard deviation over the linear range.  相似文献   

9.
A rapid and accurate method for the determination of tetracycline in human plasma and urine is presented. Determination of tetracycline in plasma is based on precipitation of plasma proteins with trifluoroacetic acid, followed by injection of the centrifuged plasma sample onto a μBondapak C18 column. Acetonitrile in phosphate buffer pH 2.2 is used as mobile phase. Only tetracycline, and no trace of lumecycline can be detected in plasma and urine after administration of lumecycline, indicating that lumecycline is completely degraded to tetracycline, lysine and formaldehyde in the gastrointestinal tract prior to absorption.Determination of tetracycline in urine was performed by injection of urine diluted with phosphoric acid onto a μBondapak Phenyl column. The precision of determination of tetracycline in plasma, expressed as the relative standard deviation, was < 3% at tetracycline concentrations of 0.05 and 3.7 μg/ml. Urine determinations were made with a precision of < 1.5% at tetracycline concentrations of 0.5 and 6.7 μg/ml.  相似文献   

10.
An analytical method for the determination of letrozole (CGS 20 267) in plasma and of letrozole and its metabolite, CGP 44 645, in urine is described. Automated liquid-solid extraction of compounds from plasma and urine was performed on disposable 100-mg C8 columns using the ASPEC system. The separation was achieved on an ODS Hypersil C18 column using acetonitrile-phosphate buffer, pH 7, as the mobile phase at a flow-rate of 1.5 ml/min. A fluorescence detector was used for the quantitation. The excitation and emission wavelengths were 230 and 295 nm, respectively. The limits of quantitation (LOQ) of letrozole in plasma and in urine were 1.40 nmol/l (0.4 ng/ml) and 2.80 nmol/l, respectively. The respective mean recoveries and coefficient of variation (C.V.) were 96.5% (9.8%) in plasma and 104% (7.7%) in urine. The LOQ of CGP 44 645 in urine was 8.54 nmol/l (2 ng/ml). The mean recovery was 108% (6.3%). The compounds were well separated from co-extracted endogenous components and no interferences were observed at the retention times of compounds. The sensitivity of this method for letrozole in plasma should be sufficient for kinetic studies in humans with single doses of 0.5 mg and possibly less.  相似文献   

11.
A high-performance liquid chromatographic analysis for the anti-AIDS drug 2',3'-dideoxyinosine (ddI) in rat plasma and urine, with a limit of detection of 0.2 μg/ml and requiring a sample size of 100 μl is described. Diluted plasma or urine samples were extracted using a C18 solid-phase extraction column. Retention of ddI on more polar solid-phase extraction columns was insufficient for sample clean-up. This method is useful for pharmacokinetic studies of ddI in small rodents.  相似文献   

12.
Modifications of existing rapid high-performance liquid chromatographic procedures for the determination of furosemide in plasma were made in order to achieve greater sensitivity. To a small volume of plasma was added an internal standard structurally related to furosemide. Then, following previously described procedures, acetonitrile was added to precipitate the proteins and the clear supernatant was separated. However prior to injection of the supernatant the pH and composition of the sample were adjusted. This modification of the sample enabled an injection volume of up to 300 μl of the supernatant to be injected onto the chromatographic column. The effluent was monitored spectrofluorimetrically. A standard linear calibration curve with a mean precision of ± 4.4% was obtained for plasma samples containing 20–900 ng/ml of furosemide. Two structurally related compounds were used as internal standards in the furosemide assay.  相似文献   

13.
A sensitive and reproducible method is described for the determination of the cytochrome P450 enzyme 2E1 substrate chlorzoxazone and its primary metabolite 6-hydroxychlorzoxazone in human plasma and urine. Plasma or diluted urine were acidified, incubated with β-glucuronidase and then were extracted with diethyl ether. Separation of the analytes was achieved on a C18 column with UV detection set at 283 nm. Excellent linearity was observed over the concentration ranges of 100–3000 ng/ml and 4–400 μg/ml in plasma and urine, respectively. The intra-assay variability was 5.1% and the inter-assay variability was 8.2% for each compound in each matrix. The method presented is applicable to pharmacokinetic and pharmacogenetic studies utilizing chlorzoxazone.  相似文献   

14.
Nitric oxide is an ubiquitary cell signaling substance. Its enzymatic production rate by nitric oxide synthase is regulated by the concentrations of the substrate l-arginine and the competitive inhibitor asymmetric dimethylarginine (ADMA). A newly recognized elimination pathway for ADMA is the transamination to α-keto-δ-(NG,NG-dimethylguanidino)valeric acid (DMGV) by the enzyme alanine-glyoxylate aminotransferase 2 (AGXT2). This pathway has been proven to be relevant for nitric oxide regulation, but up to now no method exists for the determination of DMGV in biological fluids. We have developed a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the quantification of DMGV. D6-DMGV was used as internal standard. Samples were purified online by column switching, and separation was achieved on a porous graphitic carbon column. The calibration was linear over ranges of 10 to 200 nmol/L for plasma and 0.1 to 20 μmol/L for urine. The intra- and interday accuracies and precisions in plasma and urine were better than 10%. In plasma samples, DMGV was present in concentrations between 19.1 and 77.5 nmol/L. In urine samples, concentrations between 0.0114 and 1.03 μmol/mmol creatinine were found. This method can be used as a tool for the scientific investigation of the ADMA conversion to DMGV via the enzyme AGXT2.  相似文献   

15.
A high-performance liquid chromatographic method was developed for the determination of a new proton pump inhibitor, YH1885 (I), in human plasma and urine, and rat blood and tissue homogenate using fenticonazole as an internal standard. The sample preparation was simple: a 2.5 volume of acetonitrile was added to the biological sample to deproteinize it. A 50-μl aliquot of the supernatant was injected onto a C8 reversed-phase column. The mobile phase employed was methanol-0.005 M tetrabutylammonium dihydrogenphosphate (77:23, v/v), and it was run at a flow-rate of 1.0 ml/min. The column effluent was monitored using an ultraviolet detector at 270 nm. The retention times for I and the internal standard were 9.0 and 10.3 min, respectively. The detection limits for I in human plasma and urine, and in rat tissue homogenate (including blood) were 50, 100 and 100 ng/ml, respectively. The coefficients of variation of the assay (within-day and between-day) were generally low (below 8.84%) for human plasma and urine, and for rat tissue homogenate. No interferences from endogenous substances were found.  相似文献   

16.
A high-performance liquid chromatographic method for the determination of ofloxacin in human plasma and urine was developed. The method involved deproteinisation of the sample with perchloric acid and analysis of the supernatant using a reversed-phase C18 column and fluorescence detection at an excitation wavelength of 290 nm and an emission wavelength of 460 nm. The assay was linear from 0.5 to 10.0 μg/ml. The relative standard deviation of intra- and inter-day assays was lower than 5%. The average recovery of ofloxacin from plasma was 93%. The method was evaluated in samples from healthy subjects whose drug levels were already measured by microbiological assay.  相似文献   

17.
A column-switching, reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of a new carbapenem antibiotic assay using ultraviolet detection has been developed for a new carbapenem antibiotic L-749,345 in human plasma and urine. A plasma sample is centrifuged and then injected onto an extraction column using 25 mM phosphate buffer, pH 6.5. After 3 min, using a column-switching valve, the analyte is back-flushed with 10.5% methanol–phosphate buffer for 3 min onto a Hypersil 5 μm C18 BDS 100×4.6 mm analytical column and then detected by absorbance at 300 nm. The sample preparation and HPLC conditions for the urine assay are similar, except for a longer analytical column 150×4.6 mm. The plasma assay is specific and linear from 0.125 to 50 μg/ml; the urine assay is linear from 1.25 to 100 μg/ml.  相似文献   

18.
We report a new HPLC procedure for measuring inulin in plasma and urine. Samples after dilution are boiled in mild acidic conditions and then analyzed on a C18 column. Solvent system A is 3.2 mM HCl, pH 2.5, and B is acetonitrile-3.2 mM HCl (60:40, v/v), pH 2.5. The separation is carried out in 8 min with a flow-rate of 1.0 ml/min and the absorbance monitored at 280 nm. The relationship between inulin and the recorded peak area is linear from 0.2 to 3.2 mg/ml with a correlation coefficient of 0.999 for plasma and 0.999 for urine. Within-run precision, measured at three inulin concentrations, ranged from 0.9 to 1.7% in plasma and from 0.8 to 1.2% in urine. Between-run precision varied in plasma from 2.7 to 3.2% and in urine from 3.0 to 3.3%. Analytical recovery ranged from 102 to 107% in plasma and from 101 to 105% in urine, respectively. The method is sensitive, selective and only 30-μl samples are required. Therefore, it could be used to evaluate the glomerular filtration rate even in small babies and to perform studies in animals.  相似文献   

19.
A sensitive and selective high-performance liquid chromatographic (HPLC) method was developed for the determination of pramipexole in human plasma and urine. Plasma/urine is made alkaline before pramipexole and BHT-920 (internal standard) are extracted by ethyl ether and back-extracted with a solution that contains heptanesulfonic acid. Separation is achieved by ion-pair chromatography on a Zorbax Rx C8 column with electrochemical detection at 0.6 V for plasma and ultraviolet detection at 286 nm for urine. The retention times of pramipexole and internal standard are approximately 14.4 and 10.7 min, respectively. The assay is linear in concentration ranges of 50 to 15 000 pg/ml (plasma) and 10 to 10 000 ng/ml (urine). The correlation coefficients are greater than 0.9992 for all curves. For the plasma method, the analysis of pooled quality controls (300, 3000, and 10 000 pg/ml) demonstrates excellent precision with relative standard deviations (R.S.D.) (n=18) of 1.1%, 2.3%, and 6.8%, respectively. For the urine method, quality control pools prepared at 30, 300, and 3000 ng/ml had R.S.D. values (n=18) of 2.9%, 1.7%, and 3.0%, respectively. The plasma and urine controls were stable for more than nine and three months, respectively. The mean recoveries for pramipexole and internal standard from plasma were 97.7% and 98.2%, respectively. The mean recoveries for pramipexole and internal standard from urine were 89.8% and 95.1%, respectively. The method is accurate with all intra-day (n=6) and overall (n=18) mean values for the quality control samples being less than 6.4 and 5.8% from theoretical for plasma and urine, respectively.  相似文献   

20.
A sensitive high-performance liquid chromatographic method for the determination of paromomycin in human plasma and urine was developed. Paromomycin was quantitated following pre-column derivatization with 2,4-dinitrofluorobenzene (DNFB). The chromatographic separation was carried out on a C18 column at 50°C using a mobile phase consisting of 64% methanol in water adjusted to pH 3.0 with phosphoric acid. The eluents were monitored by UV detection at 350 nm. The linearity of response for paromomycin was demonstrated at concentrations from 0.5 to 50 μg/ml in plasma and 1 to 50 μg/ml in urine. The relative standard deviation of the assay procedure is less than 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号