首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study extends to the protein level our previous observations, which had established the stage and cellular specificity of expression of hsp86 and hsp84 in the murine testis in the absence of exogenous stress. Immunoblot analysis was used to demonstrate that HSP86 protein was present throughout testicular development and that its levels increased with the appearance of differentiating germ cells. HSP86 was most abundant in the germ cell population and was present at significantly lower levels in the somatic cells. By contrast, the HSP84 protein was detected in the somatic cells of the testis rather than in germ cells. The steady-state levels of HSP86 and HSP84 paralleled the pattern of the expression of their respective mRNAs, suggesting that regulation at the level of translation was not a major mechanism controlling hsp90 gene expression in testicular cells. Immunoprecipitation analysis revealed that a 70-kDa protein coprecipitated with the HSP86/HSP84 proteins in testicular homogenates. This protein was identified as an HSP70 family member by immunoblot analysis, suggesting that HSP70 and HSP90 family members interact in testicular cells. © 1993Wiley-Liss, Inc.  相似文献   

2.
Three heat shock protein (HSP) genes (hsp70, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepi‐dopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40 °C) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4°C did not change the expression levels of any hsp in either species.  相似文献   

3.
Liu  Tongkun  Hou  Xilin  Zhang  Jingyi  Song  Yuping  Zhang  Shuning  Li  Ying 《Plant Molecular Biology Reporter》2011,29(3):723-732
BcHSP81-4 gene, a member of heat shock proteins, was identified from a suppression subtractive hybridization cDNA library in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino). The deduced amino acid sequence of the BcHSP81-4 cDNA revealed that it has high homology to other plant organelle isoforms and similar homology to both cytoplasmic and prokaryotic HSP90s. To study the regulation of gene expression, BcHSP81-4 genes in maintainer and sterility lines were monitored at different development stages and at different stress treatments. Real-time PCR was used for quantification of BcHSP81-4 mRNA. These results indicate that BcHSP81-4 is not responsive to heat shock at least at 35°C, while it is very responsive to salt and cold stress. And high expression of BcHSP81-4 in the bud of sterile line suggests that it may play prominent roles in sterility of pol CMS in non-heading Chinese cabbage.  相似文献   

4.
A novel factor required for the SUMO1/Smt3 conjugation of yeast septins   总被引:3,自引:0,他引:3  
Takahashi Y  Toh-e A  Kikuchi Y 《Gene》2001,271(2):223-231
  相似文献   

5.
6.
Mitochondria contain a nuclear-encoded heat shock protein, HSP60, which functions as a chaperonin in the post-translational assembly of multimeric proteins encoded by both nuclear and mitochondrial genes. We have isolated and sequenced full-length complementary DNAs coding for this mitochondrial chaperonin in Arabidopsis thaliana and Zea mays. Southern-blot analysis indicates the presence of a single hsp60 gene in the genome of A. thaliana. There is a high degree of homology at the predicted amino acid levels (43 to 60%) between plant HSP60s and their homologues in prokaryotes and other eukaryotes which indicates that these proteins must have similar evolutionarily conserved functions in all organisms. Northern- and western-blot analyses indicate that the expression of the hsp60 gene is developmentally regulated during seed germination. It is also heat-inducible. Developmental regulation of the (-subunit) of F1-ATPase, an enzyme complex that is involved in the cyanide-sensitive mitochondrial electron transport system, indicates that imbibed embryos undergo rapid mitochondrial biogenesis through the early stages of germination. Based on the functional role of HSP60 in macromolecular assembly, these data collectively suggest that the presence of higher levels of HSP60 is necessary during active mitochondrial biogenesis, when the need for this protein is greatest in assisting the rapid assembly of the oligomeric protein structures.  相似文献   

7.
We have isolated the birch homologue (BP8) for the carrot embryogenic gene DC8 by heterologous hybridization. The birch BP8 gene encodes a putative protein of 53 kDa, showing 52% sequence identity with the DC8 gene at the amino acid level. The putative BP8 protein contains 20 repeats of 11 amino acids and thus belongs to the group of LEA proteins isolated from such plants as carrot, cotton and wheat. Northern hybridization of mRNA isolated from birch cells representing different stages of somatic embryogenesis and non-embryogenetic material with a PB8 probe gave no signals, suggesting a low expression level of the BP8 gene.  相似文献   

8.
9.
In this study, we examined the effect of concurrent low concentrations of sodium arsenite and mild heat shock temperatures on hsp30 and hsp70 gene expression in Xenopus A6 kidney epithelial cells. RNA blot hybridization and immunoblot analysis revealed that exposure of A6 cells to 1–10 µM sodium arsenite at a mild heat shock temperature of 30 °C enhanced hsp30 and hsp70 gene expression to a much greater extent than found with either stress individually. In cells treated simultaneously with 10 µM sodium arsenite and different heat shock temperatures, enhanced accumulation of HSP30 and HSP70 protein was first detected at 26 °C with larger responses at 28 and 30 °C. HSF1 activity was involved in combined stress-induced hsp gene expression since the HSF1 activation inhibitor, KNK437, inhibited HSP30 and HSP70 accumulation. Immunocytochemical analysis revealed that HSP30 was present in a granular pattern primarily in the cytoplasm in cells treated simultaneously with both stresses. Finally, prior exposure of A6 cells to concurrent sodium arsenite (10 µM) and heat shock (30 °C) treatment conferred thermotolerance since it protected them against a subsequent thermal challenge (37 °C). Acquired thermotolerance was not observed with cells treated with the two mild stresses individually.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
 The hsp60 (heat-shock protein 60) gene family of molecular chaperones has been a subject of study in numerous systems due to its important role in the correct folding of non-native proteins in development as well as after heat-shock treatment. Here we present the characterization of the first Drosophila hsp60 homologue. Drosophila HSP60 is most closely related (72% identity across the entire protein sequence) to the mouse mitochondrial HSP60. Western blot experiments indicate that Drosophila HSP60 is enriched in the mitochondrial fraction. The distribution of HSP60 protein is dynamic during fly embryogenesis, suggesting that various cell types might have different HSP60 requirements. The molecular analysis of a P-element-induced mutation that affects the l(1)10Ac locus shows that the transposon is inserted in a 3-kb intron present in the hsp60 gene. By genetic rescue experiments we prove that Drosophila HSP60 is encoded by the essential locus l(1)10Ac opening the possibility for detailed genetic analysis of HSP60 functions in the fly. Received: 24 March 1997 / Accepted: 16 June 1997  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号