首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosylphosphatidylinositol (GPI)-anchor of the plasma membrane-associated heparan sulfate (HS) proteoglycan was metabolically radiolabeled with [3H]myristic acid, [3H]palmitic acid, [3H]inositol, [3H]ethanolamine, or [32P]phosphate in rat ovarian granulosa cell culture. Cell cultures labeled with [3H]myristic acid or [3H]palmitic acid were extracted with 4 M guanidine HCl buffer containing 2% Triton X-100 and the proteoglycans were purified by ion exchange chromatography after extensive delipidation. Specific incorporation of 3H into GPI-anchor was demonstrated by removing the label with a phosphatidylinositol-specific phospholipase C (PI-PLC). Incorporation of 3H activity into glycosaminoglycans and core glycoproteins was also demonstrated. However, the specific activity of 3H in these structures was approximately 2 orders of magnitude lower than that in the GPI-anchor, suggesting that 3H label was the result of the metabolic utilization of catabolic products of the 3H-labeled fatty acids. PI-PLC treatment of cell cultures metabolically labeled with [3H]inositol, [3H]ethanolamine, or [32P]phosphate specifically released radiolabeled cell surface-associated HS proteoglycans indicating the presence of GPI-anchor in these proteoglycans. GPI-anchored HS proteoglycans accounted for 20-30% of the total cell surface-associated HS proteoglycans and virtually all of them were removed by PI-PLC. These results further substantiate the presence of GPI-anchored heparan sulfate proteoglycan in ovarian granulosa cells and its cell surface localization.  相似文献   

2.
Previous work (Yanagishita, M., and Hascall, V. C. (1984) J. Biol. Chem. 259, 10270-10283) has indicated that heparan sulfate (HS) proteoglycans in rat ovarian granulosa cells are degraded by two kinetically distinct pathways. Pathway 1 degrades proteoglycans rapidly with a t 1/2 approximately 25 min without generating appreciable degradative intermediates. Pathway 2 degrades proteoglycans more slowly with a t 1/2 approximately 4 h, generating distinct degradative intermediates: single HS chains of Mr = approximately 10,000 and approximately 5,000. Effects of leupeptin, an inhibitor of thiol proteases, on the intracellular degradation of proteoglycans in the rat ovarian granulosa cell culture were examined using various chase protocols after labeling cells with [35S]sulfate. The presence of leupeptin at 100 micrograms/ml in the culture medium inhibited the intracellular degradation of proteoglycans by approximately 80% during a 7-h chase period after a 20-h labeling. Leupeptin affected neither the cellular content nor the in vitro activities of beta-hexosaminidase and arylsulfatase. Structural analyses of heparan sulfate species in leupeptin-treated cells demonstrated that the drug inhibited the degradation of HS proteoglycans at two distinct points. First, degradation of the core protein was partially inhibited and delayed before the start of glycosaminoglycan degradation. This resulted in the accumulation of degradative intermediates with partially degraded core proteins bearing intact glycosaminoglycan chains. This establishes the initial sequence for HS proteoglycan degradation, with proteolysis preceding endoglycosidase digestion, and suggests that these two degradation steps may occur in physically separate compartments. Second, the final depolymerization of HS fragments through pathway 2 was totally inhibited, resulting in the continuous accumulation of Mr = 5,000 HS chains. This is not due to the direct inhibition of the lysosomal exoglycosidase and sulfatase enzymes responsible for the complete depolymerization of HS chains, since pathway 1, while slowed, continued to completely depolymerize the HS chains in the presence of leupeptin. The results suggest that the intracellular compartment which completely degrades heparan sulfate chains is separate from those containing partially, endoglycosidically processed heparan sulfate chains and that leupeptin interfered with the translocation of glycosaminoglycans to the final degradation site.  相似文献   

3.
Rat ovarian granulosa cells, isolated from immature female rats 48 h after stimulation with 5 IU of pregnant mare's serum gonadotropin, were maintained in culture. The effects of monensin, a monovalent cationic ionophore, on various aspects of proteoglycan metabolism were studied by metabolically labeling cultures with [35S]sulfate, [3H]glucosamine, or [3H]glucose. Monensin inhibited post-translational modification of both heparan sulfate (HS) proteoglycans and dermatan sulfate (DS) proteoglycans, resulting in decreased synthesis of completed proteoglycans [( 35S]sulfate incorporation decreased to 10% of control by 30 microM monensin, with an ED50 approximately 1 microM). Proteoglycans synthesized in the presence of monensin showed undersulfation of both DS and HS glycosaminoglycans and altered N-linked and O-linked oligosaccharides, suggesting that the processing of all sugar moieties is closely associated. Monensin caused a decrease in the endogenous sugar supply to the UDP-N-acetylhexosamine pool as indicated by an increased 3H incorporation into DS chains [( 3H]glucosamine as precursor) in spite of the decrease in glycosaminoglycan synthesis. Monensin reduced and delayed transport of both secretory and membrane-associated proteoglycans from the Golgi complex to the cell surface. It took 2-4 min for newly labeled proteoglycans to reach the main transport process inhibited by monensin. Monensin at 30 microM did not prevent internalization of cell surface 35S-labeled proteoglycans but almost completely inhibited their intracellular degradation to free [35S]sulfate (ED50 approximately 1 microM), resulting in intracellular accumulation of both DS and HS proteoglycans. Pulse-chase experiments demonstrated that one of the intracellular degradation pathways involving proteolysis of both DS and HS proteoglycans and limited endoglycosidic cleavage of HS continued to operate in the presence of monensin. These results suggest that the intracellular degradation of proteoglycans involve both acidic and nonacidic compartments with monensin inhibiting those processes that normally occur in such acidic compartments as endosomes or lysosomes by raising their pH.  相似文献   

4.
1. Human skin fibroblasts internalize homologous sulphated proteoglycans by adsorptive endocytosis. Endocytosis rate is half maximal when the concentration of the proteoglycans is 0.1 nM. At saturation, a single fibroblast may endocytose up to 8 X 10(6) proteoglycan molecules/h. 2. The kinetics of prote;glycan binding to the cell surface suggest the presence of 6 X 10(5) high-affinity binding sites per cell. The bulk of sulphated proteoglycans associates to low-affinity binding sites on the cell surface. 3. Glycosaminoglycans and other anionic macromolecules inhibit endocytosis of sulphated proteoglycans non-competitively. The lack of interaction of glycosaminoglycans with the cell-surface receptors for sulphated proteoglycans suggests that the protein core of proteoglycans is essential for binding to the cell surface. 4. The effects of trypsin, cell density, serum concentration and medium pH on endocytosis and degradation of endocytosed sulphated proteoglycans is described. 5. A comparison of the number of the high-affinity binding sites and the number of molecules endocytosed with respect to time suggests a recycling of the proteoglycan receptors between the cell surface and the endocytotic vesicles and/or the lysosomes.  相似文献   

5.
The regulation of the cellular distribution of proteoglycans in a clonal rat parathyroid cell line by extracellular Ca2+ concentrations ([Ca2+]e) was studied. Proteoglycans synthesized by the cells metabolically labeled with [35S]sulfate have been shown to be almost exclusively heparan sulfate (HS) proteoglycans (Yanagishita, M., Brandi, M.L., and Sakaguchi, K. (1989) J. Biol. Chem. 264, 15714-15720), which are generally associated with the plasma membrane. The proportion of HS proteoglycans on the cell surface was approximately 20% in 2.1 mM (high) [Ca2+]e, whereas it increased to 50-60% in 0.05 mM (low) [Ca2+]e. Cell-associated HS proteoglycans redistribute in response to changing [Ca2+]e with a t 1/2 less than 4 min; HS proteoglycans appear on the cell surface as [Ca2+]e decreases and disappear from the cell surface as [Ca2+]e increases. Further, HS proteoglycans on the cell surface recycle to and from an intracellular compartment approximately 10 times before their degradation in low [Ca2+]e but do not recycle in high [Ca2+]e. The distribution of newly synthesized HS proteoglycans is regulated by [Ca2+]e but is independent of [Ca2+]e during biosynthesis. In low [Ca2+]e, at least 50% of the HS proteoglycans pulse-labeled for 10 min are transported from the Golgi complex to the cell surface or to the recycling compartment with a t 1/2 of approximately 20 min. Another approximately 10% appear on the cell surface in either low or high [Ca2+]e in a compartment with a long half-life. Addition of Mg2+ or Ba2+ to the low [Ca2+]e cultures had little effect on the distribution of HS proteoglycans. These observations suggest that [Ca2+]e specifically regulates the distribution and recycling of cell-associated HS proteoglycans in the parathyroid cells.  相似文献   

6.
The structures of cell-associated heparan sulfate (HS) proteoglycans and their interaction with the plasma membrane was studied using rat ovarian granulosa cell culture. HS proteoglycans were either metabolically labeled by incubating cell cultures with [3H] leucine and [35S]sulfate or labeled in plasma membrane preparations with a photoactivatable reagent, 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID), a compound which has been shown to selectively label the hydrophobic membrane-binding domains of several proteins. After purification of HS proteoglycans from the labeled cell cultures or from the labeled membrane preparations by repeated Q-Sepharose ion exchange chromatography in 8 M urea, they were analyzed by Superose 6 gel filtration and octyl-Sepharose chromatography both in 4 M guanidine HCl. The results indicated that the HS proteoglycans were labeled with 125I and therefore have an intramembranous domain. Phospholipase C (Bacillus thuringiensis), which specifically cleaves phosphatidylinositol membrane anchors, released approximately 25% of the 35S-labeled HS proteoglycans from the cell surface as well as 20-30% of the 125I-label from the 125I-TID-labeled HS proteoglycans. These data indicate that a subpopulation of HS proteoglycans are intercalated into the plasma membrane through a linkage structure involving phosphatidylinositol. Phospholipase C-resistant, 125I-labeled HS proteoglycans represent those species inserted into membrane through an intercalated peptide sequence. Core protein size of phosphatidylinositol-anchored species estimated by polyacrylamide gel electrophoresis after heparitinase digestion was approximately 80 kDa, and it was significantly larger than that of the directly intercalated species (approximately 70 kDa).  相似文献   

7.
The effects of tunicamycin, an inhibitor of N-linked oligosaccharide biosynthesis, on the synthesis and turnover of proteoglycans were investigated in rat ovarian granulosa cell cultures. The synthesis of proteoglycans was inhibited (40% of the control at 1.6 micrograms/ml tunicamycin) disproportionately to that of general protein synthesis measured by [3H]serine incorporation (80% of control). Proteoglycans synthesized in the presence of tunicamycin lacked N-linked oligosaccharides but contained apparently normal O-linked oligosaccharides. The dermatan sulfate and heparan sulfate chains of the proteoglycans had the same hydrodynamic size as control when analyzed by Sepharose 6B chromatography. However, the disulfated disaccharide content of the dermatan sulfate chains was reduced by tunicamycin in a dose-dependent manner, implying that the N-linked oligosaccharides may be involved in the function of a sulfotransferase which is responsible for sulfation of the iduronic acid residues. When [35S]sulfate and [3H]glucosamine were used as labeling precursors, the ratio of 35S/3H in chondroitin 4-sulfate was reduced to approximately 50% of the control by tunicamycin, indicating that the drug reduced the supply of endogenous sugar to the UDP-N-acetylhexosamine pool. Neither transport of proteoglycans from Golgi to the cell surface nor their turnover from the cell surface (release into the medium, or internalization and subsequent intracellular degradation) was affected by the drug. Addition of mannose 6-phosphate to the culture medium did not alter the proteoglycan turnover. When granulosa cells were treated with cycloheximide, completion of proteoglycan diminished with a t1/2 of approximately 12 min, indicating the time required for depleting the core protein precursor pool. The glycosaminoglycan synthesizing capacity measured by the addition of p-nitrophenyl-beta-xyloside, however, lasted longer (t1/2 of approximately 40 min). Tunicamycin decreased the core protein precursor pool size in parallel to decreased proteoglycan synthesis, both of which were significantly greater than the inhibition of general protein synthesis. This suggests two possibilities: tunicamycin specifically inhibited the synthesis of proteoglycan core protein, or more likely a proportion of the synthesized core protein precursor (approximately 50%) did not become accessible for post-translational modifications, and was possibly routed for premature degradation.  相似文献   

8.
The structure, biosynthesis, and distribution of cell-associated proteoglycans in a clonal line of parathyroid cells, which exhibit differentiated characteristics such as calcium-regulated hormone secretion and cell growth, were studied by metabolic labeling with [3H] glucosamine and [35S]sulfate as precursors. Proteoglycans were isolated by two consecutive ion exchange chromatography steps and then analyzed by gel filtration, polyacrylamide gel electrophoresis, and specific enzyme and chemical reactions. The cells synthesize almost exclusively (greater than 95%) heparan sulfate (HS) proteoglycans with a glycosaminoglycan synthesis rate of approximately 0.5 micrograms/10(6) cells/24 h. Two major HS proteoglycan species were identified. HS proteoglycan-I has a mass of approximately kDa with a single HS chain (approximately 12 kDa) and a core protein of approximately 150 kDa including oligosaccharides. HS proteoglycan-II has a mass of approximately 170 kDa with 3-4 HS chains (approximately 30 kDa) and a core protein of 70-80 kDa including oligosaccharides. In the medium with low ionized calcium (0.05 mM), HS proteoglycan-I is synthesized at approximately 1.6 times the rate and HS proteoglycan-II at a similar rate as for cells cultured in the medium with high ionized calcium (2.1 mM). The distribution of proteoglycans, examined by the accessibility of the molecules to trypsin, was dramatically influenced by environmental calcium concentration; at low calcium levels 70-80% of the HS proteoglycans are trypsin-accessible while only 20-30% are accessible at high calcium levels. This suggests that the proteoglycans are primarily on the cell surface in low calcium and in trypsin-inaccessible compartments in high calcium conditions.  相似文献   

9.
We examined recycling of heparan sulfate (HS) proteoglycans and transferrin receptor (Tf-R) in a rat parathyroid cell line. While extracellular Ca2+ concentration ([Ca2+]e) regulates the recycling of HS proteoglycans in parathyroid cells, such that HS proteoglycans only recycle when [Ca2+]e is lowered below physiological levels, recycling of Tf-R occurs equally well both in 0.05 mM (low) and 2 mM (high) [Ca2+]e. Inhibiting endocytosis chemically with phenylarsine oxide or at low temperature (4 degrees C) did not abolish the effects of changing [Ca2+]e on HS proteoglycans in the recycling compartment even though transport of HS proteoglycans from the Golgi complex to the cell surface was inhibited in low [Ca2+]e. Microtubules are not involved in the recycling of HS proteoglycans or of Tf-R since nocodazole did not affect these processes. Inhibiting the increase of intracellular Ca2+ by an intracellular Ca2+ chelator sustained recycling of HS proteoglycans even in the presence of high [Ca2+]e. These observations show that the exocytosis pathway of HS proteoglycans in the recycling compartment is specifically regulated by [Ca2+]e, whereas that for constitutive secretion is not. Therefore, the recycling of HS proteoglycans may be directly related to some functions of parathyroid cells regulated by [Ca2+]e. Although the mechanism by which [Ca2+]e regulates the exocytosis and recycling of HS proteoglycans is uncertain, it is suggested that an increase of intracellular Ca2+ is necessary, but not necessarily sufficient, for inhibiting their exocytosis.  相似文献   

10.
The distribution of heparan sulfate (HS) proteoglycans in clonal rat parathyroid cells is regulated by the extracellular Ca2+ concentration, which is a principal factor for parathyroid cell function (Takeuchi, Y., Sakaguchi, K., Yanagishita, M., Aurbach, G. D., and Hascall, V. C. (1990) J. Biol. Chem. 265, 13661-13668). Increasing the concentration of extracellular Ca2+ in the physiological range redistributes HS proteoglycans from the cell surface to an intracellular compartment. We have now examined effects of the extracellular Ca2+ concentration on the metabolism of the HS proteoglycans in detail using [35S]sulfate metabolic labeling-chase experiments. Two distinct metabolic pathways were demonstrated: (i) the intracellular generation of HS chains from HS proteoglycans in prelysosomal compartments followed by their release into the medium (pathway 1), and (ii) intracellular generation of HS oligosaccharides from HS chains in prelysosomal compartments, which are eventually degraded into free sulfate in lysosomes (pathway 2). The HS oligosaccharides were exclusively present within the cells, whereas HS chains were found primarily in the medium. The cells do not internalize either HS proteoglycans or HS chains from the medium. These observations indicate that these two degradation pathways are independent. In addition to these pathways, approximately 15% of the HS proteoglycans were released into the medium as a proteoglycan form. Treatment of cells with chloroquine, a lysosomotropic agent, did not affect generation of HS chains but inhibited conversion of HS chains to HS oligosaccharides or to free sulfate and resulted in the release of HS chains from the cells. The drug did not affect metabolic pathway 1. The extracellular Ca2+ concentration did not alter these intracellular degradation pathways for HS proteoglycans in the parathyroid cells. Thus, extracellular Ca2+ appears to regulate only the distribution of HS proteoglycans between the cell surface and intracellular compartments, and the process of cycling between these compartments when extracellular Ca2+ is low.  相似文献   

11.
Cell surface heparan sulfate proteoglycans (HSPGs) participate in the catabolism of many physiologically important ligands. We previously reported that syndecan HSPGs directly mediate endocytosis, independent of coated pits. We now studied perlecan, a major cell surface HSPG genetically distinct from syndecans. Cells expressing perlecan but no other proteoglycans bound, internalized, and degraded atherogenic lipoproteins enriched in lipoprotein lipase. Binding was blocked by heparitinase, and degradation by chloroquine. Antibodies against beta(1) integrins reduced initial ligand binding, consistent with their roles as cell surface attachment sites for perlecan. By several criteria, catabolism via perlecan was distinct from either coated pits or the syndecan pathway. The kinetics of internalization (t(12) = 6 h) and degradation (t(12) approximately 18 h) were remarkably slow, unlike the other pathways. Blockade of the low density lipoprotein receptor-related protein did not slow perlecan-dependent internalization. Internalization via perlecan was inhibited by genistein but unaffected by cytochalasin D, a pattern distinct from coated pits or syndecan-mediated endocytosis. Finally, we examined cooperation between perlecan and low density lipoprotein receptors and found limited synergy. Our results demonstrate that perlecan mediates internalization and lysosomal delivery that is kinetically and biochemically distinct from other known uptake pathways and is consistent with a very slow component of HSPG-dependent ligand processing found in vitro and in vivo.  相似文献   

12.
The effect of phosphatidyinositol-specific phospholipase C (PI-PLC) on mouse sperm-egg interaction was investigated in this study to determine if glycosyl-phosphatidylinositol (GPI)-anchored proteins are involved in mammalian fertilization. When both sperm and zona-intact oocytes were pretreated with a highly purified preparation of PI-PLC and coincubated, there was no significant effect on sperm-zona pellucida binding; however, fertilization was reduced from 59.6% (control group) to 2.8% (treatment group). A similar reduction in fertilization rates was found when zona-intact oocytes were treated with PI-PLC and washed prior to incubation with untreated sperm. The effect of PI-PLC on sperm binding and fusion with zona-free oocytes was then investigated. Treatment of sperm with PI-PLC had no significant effect on sperm-egg binding or fusion. However, treatment of eggs with PI-PLC significantly reduced sperm-egg binding and fusion from 6.2 bound and 2.1 fused sperm per egg in the control group to 2.1 bound and 0.02 fused sperm per egg in the treatment group. This decrease in sperm-egg binding and fusion depended on the dose of PI-PLC employed, with a maximal inhibitory effect on binding and fusion at 5 and 1 U/ml, respectively. PI-PLC-treated oocytes could be artificially activated by calcium ionophore, demonstrating that the oocytes were functionally viable following treatment. Furthermore, treatment of oocytes with PI-PLC did not reduce the immunoreactivity of the non-GPI-anchored egg surface integrin, alpha6beta1. Taken together, these observations support the hypothesis that PI-PLC affects fertilization by specifically releasing GPI-anchored proteins from the oolemma. In order to identify the oolemmal GPI-anchored proteins involved in fertilization, egg surface proteins were labeled with sulfo-NHS biotin, treated with PI-PLC, and analyzed by two-dimensional gel electrophoresis followed by avidin blotting. A prominent high-molecular-weight protein cluster (approximately 70 kDa, pI 5) and a lower molecular weight (approximately 35-45 kDa, pI 5.5) protein cluster were released from the oolemmal surface as a result of PI-PLC treatment. It is likely that these GPI-anchored egg surface proteins are required for sperm-egg binding and fusion.  相似文献   

13.
The metabolism of endogenously labeled proteoglycans was studied in rat ovarian granulosa cell cultures by a series of pulse-chase experiments using [35S]sulfate as a precursor. More than 90% of the newly synthesized proteoglycans are transported to the cell surface (trypsin-accessible compartment) with a median transit time of 13 min. The membrane-bound heparan sulfate-proteoglycan (HS-PG) is lost from the cell surface either by release into the medium (30%, with t1/2 of 4 h) or by internalization (70%, with t1/2 of 4 h). Internalized HS-PG, which does not recycle to the cell surface, is degraded by two major pathways. In pathway 1, 60% of the internalized HS-PG migrates to lysosomes with a relatively short t1/2 of 30 min, where it is rapidly degraded, releasing free [35S]sulfate without detectable intermediate products. Chloroquine treatment inhibited degradation, resulting in the accumulation of intact proteoglycans inside the cell. In pathway 2, 40% of the internalized HS-PG is first subjected to extensive proteolysis and limited endoglycosidic degradation yielding single HS chains about 1/3 of their original size (t1/2 of 30 min). Chloroquine did not inhibit this step. The partially degraded HS is then degraded further by limited endoglycosidic activity to about 1/4-1/5 the original size (t1/2 of 30-60 min). This step is inhibited by chloroquine. These smaller fragments have a relatively long t1/2 of 3-4 h before rapid degradation in the lysosomes, releasing free [35S]sulfate. Approximately 7% of the newly synthesized HS-PG that is not transported to the cell surface is degraded directly by pathway 2. The larger dermatan sulfate proteoglycan (DS-I) is transported to the cell surface from which it is quantitatively released into the medium with a t1/2 of 4-6 h. The smaller DS-PG (DS-II) is metabolized similarly to the HS-PG. Most (greater than 90%) is transported to the cell surface from which it is lost either by release into the medium (40%) or by internalization (60%). About 60% of the internalized DS-II is degraded by pathway 1 (t1/2 of 30 min), while the remainder appears to be degraded by pathway 2 with an overall t1/2 of 4 h. However, in contrast to the degradation of HS-PG by pathway 2, no endoglycosidic degradation of the DS chains occurred.  相似文献   

14.
Normal cellular prion protein (PrP(C)) and decay-accelerating factor (DAF) are glycoproteins linked to the cell surface by glycosylphosphatidylinositol (GPI) anchors. Both PrP(C) and DAF reside in detergent insoluble complex that can be isolated from human peripheral blood mononuclear cells. However, these two GPI-anchored proteins possess different cell biological properties. The GPI anchor of DAF is markedly more sensitive to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC) than that of PrP(C). Conversely, PrP(C) has a shorter cell surface half-life than DAF, possibly due to the fact that PrP(C) but not DAF is shed from the cell surface. This is the first demonstration that on the surface of the same cell type two GPI-anchored proteins differ in their cell biological properties.  相似文献   

15.
Heparan sulfate (HS) proteoglycans, at the cell surface and extracellular matrix, facilitate ligand-receptor interactions crucial to many physiological processes. The distinct sulfation patterns of HS sugar chains presented by their protein core are key to HS proteoglycan activity. Tight regulation of several Golgi complex enzyme families is crucial to produce complex tissue-specific HS sequences. Several in vivo models deficient in HS biosynthesis enzymes demonstrate that developmental abnormalities result from modified HS structure. This review will discuss the plasticity of sulfation requirements on HS for activating protein ligands, which might reflect a flexible HS biosynthetic mechanism. In addition, the latest discovery of HS acting enzymes, the Sulfs, responsible for extracellular tweaking of HS sulfation levels subsequent to biosynthesis will be considered.  相似文献   

16.
After binding, the protein toxins ricin, abrin, and modeccin are endocytosed and processed through the cell's vesicular system in a poorly understood fashion, prior to translocation to the cytosol. The role of the Golgi apparatus in toxin processing was studied using brefeldin-A (BFA), a fungal metabolite which blocks Golgi function. At concentrations that inhibit secretion of interleukin-2 (IL-2), BFA blocks ricin, modeccin, and abrin intoxication of a lymphocyte derived cell line (Jurkat). Paradoxically, BFA enhances the toxicity of two ricin A-chain immunotoxins targeted against distinct cell surface determinants. BFA concentrations which are optimal for immunotoxin enhancement are below those needed to affect ricin intoxication or IL-2 secretion. BFA blockade of ricin does not involve effects on ricin endocytosis, toxin translocation to the cytosol, or the enzymatic activity of toxin A-chain. In contrast, BFA has no effect on immunotoxin processing but does enhance the immunotoxin translocation step. It is concluded that: 1) intact Golgi function is required for holotoxin processing. 2) Intact Golgi function is not required for holotoxin translocation. 3) Golgi function is tightly linked to immunotoxin translocation. 4) BFA has effects on vesicular routing in addition to the block of Golgi function in secretion which has been reported.  相似文献   

17.
The endocytic itineraries of lipid raft markers, such as glycosyl phosphatidylinositol (GPI)-anchored proteins and glycosphingolipids, are incompletely understood. Here we show that different GPI-anchored proteins have different intracellular distributions; some (such as the folate receptor) accumulate in transferrin-containing compartments, others (such as CD59 and GPI-linked green fluorescent protein [GFP]) accumulate in the Golgi apparatus. Selective photobleaching shows that the Golgi pool of both GPI-GFP and CD59-GFP constantly and rapidly exchanges with the pool of these proteins found on the plasma membrane (PM). We visualized intermediates carrying GPI-GFP from the Golgi apparatus to the PM and separate structures delivering GPI-GFP to the Golgi apparatus.GPI-GFP does not accumulate within endocytic compartments containing transferrin, although it is detected in intracellular structures which are endosomes by the criteria of accessibility to a fluid phase marker and to cholera and shiga toxin B subunits (CTxB and STxB, which are also found in rafts). GPI-GFP and a proportion of the total CTxB and STxB taken up into cells are endocytosed independently of clathrin-associated machinery and are delivered to the Golgi complex via indistinguishable mechanisms. Hence, they enter the Golgi complex in the same intermediates, get there independently of both clathrin and rab5 function, and are excluded from it at 20 degrees C and under conditions of cholesterol sequestration. The PM-Golgi cycling pathway followed by GPI-GFP could serve to regulate lipid raft distribution and function within cells.  相似文献   

18.
Several polarity proteins, including Scribble (Scrb) have been implicated in control of vesicle traffic, and in particular the endocytosis of E-cadherin, but through unknown mechanisms. We now show that depletion of Scrb enhances endocytosis of E-cadherin by weakening the E-cadherin-p120catenin interaction. Unexpectedly, however, the internalized E-cadherin is not degraded but accumulates in the Golgi apparatus. Silencing p120-catenin causes degradation of E-cadherin in lysosomes, but degradation is blocked by the co-depletion of Scrb, which diverts the internalized E-cadherin to the Golgi. Loss of Scrb also enhances E-cadherin binding to retromer components, and retromer is required for Golgi accumulation of Scrb, and E-cadherin stability. These data identify a novel and unanticipated function for Scrb in blocking retromer-mediated diversion of E-cadherin to the Golgi. They provide evidence that polarity proteins can modify the intracellular itinerary for endocytosed membrane proteins.  相似文献   

19.
The role of glycosylphosphatidylinositol (GPI)-anchored sperm proteins in reproduction has been investigated. SDS-polyacrylamide gels (PAGE) analysis of goat sperm (Capra indica) indicated that several GPI-anchored proteins were released by phosphatidylinositol-specific phospholipase-C (PI-PLC) treatment. The distribution of this category of PI-PLC-sensitive GPI-anchored proteins on the surface of sperm was examined by indirect immunofluorescence. The fluorescence microscopic study clearly demonstrated that the PI-PLC-sensitive GPI-anchored proteins are confined predominantly to the head region of goat sperm. Further experiments were conducted on intact and PI-PLC treated sperm in order to decipher the function of GPI proteins. Co-incubation of sperm with peritoneal macrophages led to the enhanced phagocytosis of PI-PLC treated sperm by macrophages compared with the untreated intact sperm. Transmission electron micrographs of the macrophages acquired from the phagocytosis assay are provided to corroborate the same. From the results obtained it is inferred that one or more of the PI-PLC-sensitive GPI-anchored proteins on the sperm surface could act as protection factor(s) that shield the sperm from macrophages.  相似文献   

20.
We demonstrate the presence of a glycosylphosphatidylinositol (GPI) anchor-specific endosomal pathway in the protozoan pathogen Trypanosoma brucei. In higher eukaryotes evidence indicates that GPI-anchored proteins are transported in both the endocytic and exocytic systems by mechanisms involving sequestration into specific membrane microdomains and consequently sorting into distinct compartments. This is potentially extremely important in trypanosomatids as the GPI anchor is the predominant mechanism for membrane attachment of surface macromolecules, including the variant surface glycoprotein (VSG). A highly complex developmentally regulated endocytic network, vital for nutrient uptake and evasion of the immune response, exists in T. brucei. In common with mammalian cells an early endosomal compartment is defined by Rab5 small GTPases, which control transport processes through the endosomal system. We investigate the function of two trypanosome Rab5 homologues. TbRAB5A and TbRAB5B, which colocalize in the procyclic stage, are distinct in the bloodstream form of the parasite. TbRAB5A endosomes contain VSG and transferrin, endocytosed by the T. brucei GPI-anchored transferrin receptor, whereas TbRAB5B endosomes contain the transmembrane protein ISG(100) but neither VSG nor transferrin. These findings indicate the presence of trypanosome endosomal pathways trafficking proteins through specific routes depending on the mode of membrane attachment. Ectopic expression of mutant TbRAB5A or -5B indicates that TbRAB5A plays a role in LDL endocytosis, whereas TbRAB5B does not, but both have a role in fluid phase endocytosis. Hence TbRAB5A and TbRAB5B have distinct functions in the endosomal system of T. brucei. A developmentally regulated GPI-specific endosomal pathway in the bloodstream form suggests that specialized transport of GPI-anchored proteins is required for survival in the mammalian host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号