首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to better understand granule release from platelets, we developed an alpha-toxin permeabilized platelet model to study alpha-granule secretion. Secretion of alpha-granules was analyzed by flow cytometry using P-selectin as a marker for alpha-granule release. P-selectin surface expression occurred when platelets were permeabilized in the presence of Ca2+. Responsiveness to Ca2+ was lost 30 min after permeabilization but could be reconstituted with MgATP. Alpha-toxin-permeabilized, MgATP-exposed platelets also degranulated within a pH range of 5.4-5.9 without exposure to and independent of Ca2+. ATP, GTP, CTP, UTP, and ITP supported Ca2+-induced alpha-granule secretion, while H+-induced alpha-granule secretion occurred only with ATP and GTP. Both Ca2+- and H+-induced alpha-granule secretion required ATP hydrolysis. Kinase inhibitors blocked both Ca2+- and H+-induced secretion. These data suggest that alpha-granule secretion in this permeabilized platelet system shares many characteristics with granule secretion studied in other permeabilized cell models. Furthermore, these results show that H+ can trigger alpha-granule release independent of Ca2+.  相似文献   

2.
We have observed that the addition of Ca2+ to platelets, permeabilized with saponin, promotes a drastic dephosphorylation of proteins and polyphosphoinositides without inducing platelet responses. Subsequent addition of thrombin could promote secretion of serotonin and aggregation in the absence of phospholipase C-induced breakdown of the inositol phospholipids and protein phosphorylation. This information indicates that activation of saponized platelets by thrombin is independent of the formation of second messengers derived from the phospholipase C-induced breakdown of the inositol phospholipids. The implications of this result for intact platelets are discussed.  相似文献   

3.
1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7), which has been identified as a potent inhibitor of protein kinase C in vitro (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry, in press), enhanced serotonin release from human platelets that was induced by the 12-O-tetradecanoyl phorbol 13-acetate and correspondingly decreased incorporation of radioactive phosphate into a 20,000-dalton protein. H-7 did not affect the protein phosphorylation or the serotonin secretion in unstimulated platelets. A phosphopeptide with a molecular weight of 20,000 has previously been identified as a light chain (LC20) of platelet myosin and both protein kinase C and Ca2+-calmodulin-dependent myosin light-chain kinase have been shown to be involved in its phosphorylation. Two-dimensional peptide mapping following tryptic hydrolysis revealed that H-7 selectively inhibited the protein kinase C-catalyzed phosphorylation of myosin light chain. This pharmacological evidence suggests that Ca2+-activated, phospholipid-dependent myosin light-chain phosphorylation may play an inhibitory role in the release reaction.  相似文献   

4.
The epoxyeicosatrienoic acids derived from the cytochrome P-450 pathway of arachidonic acid metabolism have a unique platelet antiaggregatory profile. This prompted us to examine their influence on cellular Ca2+ mobilization. 14,15-cis-Epoxyeicosatrienoic acid and related compounds inhibited the rise in cytosolic Ca2+ following agonist stimulation of platelets by thapsigargin, a receptor-independent agonist, and thrombin, a receptor-dependent agonist. The epoxyeicosatrienoic acids selectively inhibited the entry of Ca2+ from the exterior of the platelets but did not alter Ca2+ discharge from intracellular pools. The magnitude of inhibition by 14,15-cis-epoxyeicosatrienoic acid was proportional to the rate of Ca2+ entry. 14,15-cis-Epoxyeicosatrienoic acid also inhibited the rate of influx of Mn2+, a cation which enters platelets via pathways similar to Ca2+. The magnitude of inhibition was proportional to the rate of Mn2+ entry, suggesting that epoxyeicosatrienoic acids act on divalent cation channels in a fashion which depends on the state of opening of the channel. Selective inhibition of Ca2+ entry into platelets may account for the antiaggregatory effects of the epoxyeicosatrienoic acids. We are unaware of other endogenous compounds exhibiting this property, suggesting that epoxyeicosatrienoic acids may be useful to probe agonist-stimulated Ca2+ mobilization in nonexcitable cells.  相似文献   

5.
Human platelets containing granule-bound [14C]serotonin were permeabilized, equilibrated at 0 degrees C with ATP and with various Ca2+ buffers and guanine nucleotides, and then incubated at 25 degrees C with or without a stimulatory agonist. Ca2+ alone induced the ATP-dependent secretion of [14C]serotonin (50% at a pCa of 5.1) but the sensitivity of secretion to Ca2+ was greatly enhanced by guanine nucleotides [6-fold by 100 microM GTP, 100-fold by 100 microM guanyl-5'-yl imidodiphosphate and greater than 500-fold by 100 microM guanosine 5'-O-(3-thiotriphosphate)] or by stimulatory agonists (10-fold by 2 units thrombin/ml and 4-fold by 1 microM 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine). When both GTP and a stimulatory agonist were added, they had synergistic effects on secretion. Cyclic GMP and GMP acted similarly to GTP. The effects of all these guanine nucleotides were inhibited by guanosine 5'-O-(2-thiodiphosphate), whereas those of stimulatory agonists were not. Our results demonstrate the presence in platelets of guanine nucleotide-dependent and independent mechanisms regulating the sensitivity of secretion to Ca2+.  相似文献   

6.
Protein phosphatases and phosphatase inhibitors were used to examine the role of protein phosphorylation in the regulation of norepinephrine secretion in digitonin-permeabilized PC12 cells. The addition of an exogenous type 2A protein phosphatase caused as much as a 70% decrease in Ca2(+)-dependent norepinephrine secretion. In the presence of okadaic acid, a potent inhibitor of type 2A protein phosphatases, phosphatase 2A had no effect on secretion. The addition of exogenous calcineurin, a Ca2(+)-calmodulin-stimulated phosphatase, also caused decrease in Ca2(+)-dependent secretion, but on a molar basis it was less effective than phosphatase 2A. Two phosphatase inhibitors, 1-naphthylphosphate and sodium pyrophosphate, caused 75-100% increases in the amount of norepinephrine secreted in the absence of Ca2+ without affecting the amount of norepinephrine secreted in the presence of Ca2+. This stimulation of Ca2(+)-independent secretion by 1-naphthylphosphate and pyrophosphate suggests that there is a slow rate of Ca2(+)-independent phosphorylation and that phosphorylation triggers secretion. Unlike the results obtained in the presence of ATP, secretion in the presence of adenosine-5'-O-(3-thiotriphosphate), ATP gamma S, was not affected by the addition of type 2A protein phosphatase or by the addition of phosphatase inhibitors. These results are consistent with secretion in these permeabilized cells being regulated by a Ca2(+)-stimulated phosphorylation.  相似文献   

7.
8.
A study was made of functional maturity of the terminal part of serotoninergic system of rat hypothalamus in perinatal period: the maturity was estimated by the ability to release serotonin. The release of specifically taken up serotonin (3H-5-OT) by the tissue of hypothalamus of 16-20-day-old rat fetuses, 8-9-day males and adult males was studied in the perfusion system. Spontaneous release of the labelled amine was recorded in the earliest studied period--on the 16th day of the prenatal period, but the response to K+ depolarization was absent at this time. For the first time the increase of the rate of 3H-5-OT release in response to depolarization was noted on the 17th day of development. In the absence of Ca2+ depolarizing stimulus produced no increase in the release of the labelled product. Similar results were obtained with perfusion of fetal hypothalamus on the 18t hand 20th days of development. In neonatal animals the release of 5-OT in response to depolarization was equal to that in adults. The data obtained point to a possible functioning of serotoninergic elements of hypothalamus in the perinatal period in rats.  相似文献   

9.
BACKGROUND/AIM: The present study aimed at elucidating the mechanism(s) of serotonin (5-HT) efflux induced by thapsigargin from human platelets in the absence of extra-cellular Ca2+. METHODS: Efflux of pre-loaded radiolabeled serotonin was generally determined by filtration techniques. Cytosolic concentrations of Ca2+, Na+ and H+ were measured with appropriate fluorescent probes. RESULTS: 5-HT efflux from control or reserpine-treated platelets--where reserpine prevents 5-HT transport into the dense granules--was proportional to thapsigargin evoked cytosolic [Ca2+]c increase. Accordingly factors as prostacyclin, aspirin and calyculin which reduced [Ca2+]c-increase also inhibited the 5-HT efflux. Thapsigargin, which also caused a remarkable increase in cytosolic [Na+]c, promoted less 5-HT release, in parallel to lower [Na+]c and [Ca2+]c increase, when added to platelet suspensions containing low [Na+]. The Na+/H+ exchanger monensin increased the [Na+]c and induced 5-HT efflux without affecting the Ca2+ level. The 5-HT efflux induced by both [Ca2+] or [Na+]c increase did not depend on pH or membrane potential changes, whereas it decreased in the absence of extra-cellular K+, and increased in the absence of Cl- or Na+. CONCLUSION: Increases in [Ca2+]c and [Na+]c independently induce serotonin efflux through the outward directed plasma membrane serotonin transporter SERT. This event might be physiologically important at the level of capillaries or narrowed arteries where platelets are subjected to high shear stress which causes [Ca2+]c increase followed by 5-HT release which might exert vasodilatation.  相似文献   

10.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

11.
The mechanisms of granule protein secretion have been studied in streptolysin-O-permeabilized guinea pig eosinophils. Secretion of the granule-associated enzyme N-acetyl-beta-D-glucosaminidase was dependent on both Ca2+ and a nonhydrolyzable GTP analogue, guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), suggesting roles for both calcium and GTP binding proteins. Secretion was maximal by 7 min, and varied between 35 and 60% of the total enzyme activity. Other GTP analogues also elicited secretion, with rank order GTP-gamma-S greater than guanylyl-imidophosphate greater than guanylyl (beta-gamma-methylene-diphosphate). Unrelated nucleotide triphosphates showed little or no effect confirming the specificity of the G protein. Transmission electronmicroscopy confirmed that permeabilization alone did not result in loss of granules and that exocytosis was dependent on the addition of the effectors, Ca2+ and GTP-gamma-S. ATP enhanced the magnitude of the secretory response and also enhanced the effective affinities for both Ca2+ and GTP-gamma-S. In the presence of 10(-5) M GTP-gamma-S the ED50 (Ca2+) was pCa 5.57 +/- 0.04 (2.69 microM) in the absence of ATP and declined to pCa 6.16 +/- 0.03 (0.69 microM) in the presence of ATP (p less than 0.0001). Furthermore, ATP served to restore responsiveness in cells that had been rendered refractory by delaying stimulation after permeabilization. Pretreatment with PMA (an activator of PKC) inhibited the induction of a refractory state, whereas inhibition of PKC partially countered the ability of ATP to restore responsiveness, both observations pointing to a requirement for a specific component of the secretory mechanism to be in a phosphorylated state in order to condone the secretion process. These observations show that secretory mechanisms in eosinophils are similar to those in other myeloid cells, in particular neutrophils and mast cells, although the time course of secretion is more protracted.  相似文献   

12.
Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations.   总被引:9,自引:5,他引:4  
Based on realistic mechanisms of Ca2+ buffering that include both stationary and mobile buffers, we derive and investigate models of Ca2+ diffusion in the presence of rapid buffers. We obtain a single transport equation for Ca2+ that contains the effects caused by both stationary and mobile buffers. For stationary buffers alone, we obtain an expression for the effective diffusion constant of Ca2+ that depends on local Ca2+ concentrations. Mobile buffers, such as fura-2, BAPTA, or small endogenous proteins, give rise to a transport equation that is no longer strictly diffusive. Calculations are presented to show that these effects can modify greatly the manner and rate at which Ca2+ diffuses in cells, and we compare these results with recent measurements by Allbritton et al. (1992). As a prelude to work on Ca2+ waves, we use a simplified version of our model of the activation and inhibition of the IP3 receptor Ca2+ channel in the ER membrane to illustrate the way in which Ca2+ buffering can affect both the amplitude and existence of Ca2+ oscillations.  相似文献   

13.
cAMP reduces the affinity of Ca2+-triggered secretion in platelets   总被引:1,自引:0,他引:1  
J M Collazos  A Sanchez 《FEBS letters》1987,215(1):183-186
Prostacyclin and other related compounds known to increase intracellular cAMP levels inhibit platelet responses. The mechanisms involved are only partially known, especially those concerning the complex relations between Ca2+ and cAMP as opposite intracellular mediators. Here, we have investigated aggregation and secretion in quin2-loaded platelets under conditions in which Ca2+ and cAMP are the only intracellular mediators. Our results show that cAMP inhibits aggregation and secretion in ionophore-treated cell without modifying their intracellular Ca2+ levels. This result suggests that the inhibition takes place on some intracellular target for Ca2+.  相似文献   

14.
Micromolar levels of free calcium ions added to the extracellular medium elicit secretion of serotonin from electropermeabilized bovine platelets in the presence of millimolar levels of Mg-ATP. Such Ca2(+)-dependent secretion of serotonin was almost completely impaired when the permeabilized platelets were preincubated for 1 min at 35 degrees C in 100 microM Ca2+ without Mg-ATP. The half-maximal effect was observed with about 45 microM Ca2+ in the preincubation medium. Inhibitors of serine-thiol protease, such as leupeptin and antipain, suppressed the impairment of the secretion of serotonin by the preincubation with Ca2+. Electron microscopic observation revealed that disorganization of the cytoskeletal structures, in particular of the membrane undercoat and the network of microfilaments, accompanied the impairment of secretion of serotonin. Microfilaments were also found to be dissociated from dense granules that contained serotonin. These morphological changes were also suppressed when antipain was included in the Ca2(+)-preincubation medium. Coincident with these morphological changes, the following biochemical changes were observed in 100 microM Ca2+ but not in the presence of Ca2+ and antipain. The amount of Triton-insoluble cytoskeleton and the acto-myosin content of the dense-granule fraction were markedly decreased. The decrease in Triton-insoluble cytoskeletons was quantitatively correlated with the degree of impairment of secretion of serotonin. Immunoblot analysis of EGTA extracts of the cells showed that the 240-kDa spectrin in platelets was degraded to a 235-kDa fragment, and a 260-kDa actin-binding protein (ABP) in platelets was partially degraded to 190- and 110-kDa components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
One of the earliest events following stimulation of human platelets with thrombin is a rise in the cytosolic pH, pHi, mediated by Na+/H+ exchange, and an increase in the cytosolic free Ca2+ concentration, [Ca2+]i. In the present study we investigated whether an increase in pHi alone, induced by the Na+/H+ ionophore monensin, is sufficient for platelet activation. Although monensin (20 microM) raised pHi from 7.10 +/- 0.05 (n = 21) to 7.72 +/- 0.17 (n = 13), neither Ca2+ influx nor mobilization were detectable upon this treatment in fura2-loaded platelets. In contrast, thrombin (0.05 U/ml) raised pHi to 7.31 +/- 0.10 (n = 10) and increased [Ca2+]i by more than 250 nM both in the presence and absence of extracellular Ca2+. Thrombin also caused the formation of phosphatidic acid and phosphorylation of the 20 kDa and 47 kDa proteins in platelets labeled with 32P. Monensin, however, induced none of these responses. It is concluded that an increase in pHi alone is not a sufficient trigger for platelet activation but enhances intracellular signal transduction in platelets stimulated by natural agonists.  相似文献   

16.
Rat mast cells, pretreated with metabolic inhibitors and permeabilized by streptolysin-O, secrete histamine when provided with Ca2+ (buffered in the micromolar range) and nucleoside triphosphates. We have surveyed the ability of various exogenous nucleotides to support or inhibit secretion. The preferred rank order in support of secretion is ITP greater than XTP greater than GTP much greater than ATP. Pyrimidine nucleotides (UTP and CTP) are without effect. Nucleoside diphosphates included alongside Ca2+ plus ITP inhibit secretion in the order 2'-deoxyGDP greater than GDP greater than o-GDP greater than ADP approximately equal to 2'deoxyADP approximately equal to IDP. Secretion from the metabolically inhibited and permeabilized cells can also be induced by stable analogues of GTP (GTP-gamma-S greater than GppNHp greater than GppCH2p) which synergize with Ca2+ to trigger secretion in the absence of phosphorylating nucleotides. ATP enhances the effective affinity for Ca2+ and GTP analogues in the exocytotic process but does not alter the maximum extent of secretion. The results suggest that the presence of Ca2+ combined with activation of events controlled by a GTP regulatory protein provide a sufficient stimulus to exocytotic secretion from mast cells.  相似文献   

17.
We examined the role of Ca2+, both extracellular and intracellular in origin, in the release reaction and protein phosphorylation in rabbit platelets stimulated with platelet activating factor (acetylglyceryl ether phosphorylcholine), thrombin, or ionophore A23187. In the presence of extracellular Ca2+, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a putative antagonist of intracellular Ca2+ transport, blocked platelet activating factor-initiated serotonin release at a half-maximal inhibitor concentration of 40 μM, compared to 350 μM for thrombin-induced release and greater than 500 μM, for A23187-induced release. Platelet activating factor-induced phosphorylation of two platelet proteins of Mr=41 000 (P7P) and 20 000 (P9P) was inhibited by TMB-8, an effect which was additive to that caused by removing extracellular Ca2+. TMB-8 demonstrated only minor to non-existant inhibitory effects on phosphorylation in thrombin- or A23187-stimulated platelets. In contrast to P9P phosphorylation, phosphorylation of P7P caused by platelet activating factor was more dependent on a TMB-8 sensitive step than on the availability of extracellular Ca2+. Experiments with buffers containing fixed concentrations of free Ca2+ revealed that both processes (release and phosphorylation), when stimulated by platelet activating factor and thrombin, had the same threshold requirement (1–3 μM) for extracellular free Ca2+. These studies provide evidence that stimulation of rabbit platelets by platelet activating factor is more dependent on a TMB-8-sensitive intracellular Ca2+ source than is stimulation caused by thrombin. Furthermore, our data indicate that activation of different intracellular processes involved in platelet secretion (such as P7P and P9P phosphorylation) may require Ca2+ from different pools.  相似文献   

18.
A 50 kDa, calcium-dependent protein kinase (CDPK) was purified about 1000-fold from cultured cells of alfalfa (Medicago varia) on the basis of its histone H1 phosphorylation activity. The major polypeptide from bovine histone H1 phosphorylated by either animal protein kinase C (PK-C) or by the alfalfa CDPK gave an identical phosphopeptide pattern. The phosphoamino acid determination showed phosphorylation of serine residues in histone H1 by the plant enzyme. Histone-related oligopeptides known to be substrates for animal histone kinases also served as substrates for the alfalfa kinase. Both of the studied peptides (GKKRKRSRKA; AAASFKAKK) inhibited phosphorylation of H1 histones by bovine and alfalfa kinases. The results of competition studies with the nonapeptide (AAASFKAKK), which is a PK-C specific substrate, suggest common features in target recognition between the plant Ca2+-dependent kinase and animal protein kinase C. We also propose that synthetic peptides like AAASFKAKK can be used as a tool to study substrates of plant kinases in crude cell extracts.  相似文献   

19.
Zinc ions at micromolar levels exhibited a significant inhibitory activity toward platelet activating factor (AGEPC)- and thrombin-induced serotonin release from washed rabbit platelets. In the ranges from 25 to 30 microM and 10 to 50 microM, respectively, zinc essentially prevented any serotonin release from 1.25 X 10(8) cells/microliter by 1 X 10(-10) M AGEPC and by 0.2 unit thrombin/ml. This inhibition by zinc ions, in micromolar range, occurred in the presence of 1.0 mM Ca2+. The amount of zinc needed for inhibition was inversely proportional to the amount of AGEPC present and further zinc must be added prior to or at the same time as the AGEPC to be effective. Introduction of zinc ions after the AGEPC essentially abolished the inhibitory properties of this divalent cation. Other cations such as Cu2+, La3+, Cd2+, and Mg2+ were ineffective as inhibitors at concentrations where zinc showed its maximal effects. Under conditions similar to those noted above, aggregation induced by AGEPC was blocked only to the extent of 25% of a control. No inhibitory action by zinc on thrombin-induced aggregation was noted. It is apparent that zinc ions influence a site(s) on the rabbit platelet of considerable importance to the activation (or signaling) process by AGEPC and thrombin in these cells, as expressed by serotonin release. Zinc should provide a suitable probe to explore the mechanism of action of these agonists in their interaction with sensitive cells and to define in more specific biochemical terms the putative receptor for these molecules.  相似文献   

20.
The regulation of insulin secretion from RINm5F cells exposed to high voltage discharge has been investigated. Electron microscopy revealed that the overall structure of the cells was preserved after permeabilization. In this preparation insulin release was stimulated by Ca2+ (EC50=2.4 M). The stable GTP analogue GTPS enhanced secretion both at intermediate (nano- to micromolar) and vanishingly low (<10 pM) Ca2+ concentrations. At optimal Ca2+ (10 M) the effect of GTPS was greatly reduced. We investigated whether the secretory response to GTP analogues was mediated by any of three enzyme systems regulated by GTP-binding proteins, i.e. generation of cyclic AMP by adenylate cyclase, of diacylglycerol by phospholipase C and of arachidonic acid by phospholipase A2. The involvement of these messenger systems could be excluded as (i) cyclic AMP only had minor, Ca2+ dependent effects, (ii) phospholipase C was not activated in the absence of Ca2+ and insulin secretion due to the phorbol ester TPA displayed a different Ca2+ dependency, (iii) arachidonic acid did not elicit Ca2+ independent insulin secretion. These results, taken together with the finding that insulin secretion due to Ca2+ or TPA is attenuated by the inhibitory guanine nucleotide GDPS, suggest the existence of a regulatory site in exocytosis which is sensitive to guanine nucleotides.Abbreviations InsP3 inositol trisphosphate - Ptd-InsP2 phosphatidylinositol 4,5-bisphosphate - GTPS guanosine 5-(3-O-thio)triphosphate - GDPS guanosine 5-(2-O-thio)diphosphate - Gpp(NH)p guanyl-5-yl imidodiphosphate - TPA 12-O-tetradecanoylphorbol-13-acetate - OAG 1-oleoyl-2-acetylglycerol - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - EGTA (ethylenebis(oxyethylenenitrilo)tetraacetic acid - DAG diacylglycerol - [Ca2+]i cytosolic free Ca2+ concentration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号