首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Nuclear transport proteins such as CSE1, NUP93 and Importinα have recently been shown to be chromatin-associated proteins in yeast, which have unexpected functions in gene regulation. Here we report interactions between the mammalian histone acetyltransferase CBP with nuclear transport proteins CAS (a CSE1 homologue) and Importin-α (Impα) and NUP93. CAS was found to bind the SRC1 interaction domain (SID) of CBP via a leucine-rich motif in the N-terminus of the protein, that is conserved in other SID-binding proteins. Co-immunoprecipitation experiments also revealed that CBP and Impα proteins form a complex. As Impα is a known acetylation target of CBP/p300, and is recycled to the cytoplasm via the exportin CAS, we investigated whether HDAC inhibitors would alter the subcellular localisation of these proteins. Treatment of COS-1 cells with the HDAC inhibitors trichostatin A or sodium butyrate resulted in sequestration of Impα in the nuclear envelope, accumulation of CAS in nuclear aggregates, and an increased number of CBP-containing PML bodies per cell. In addition, HDACi treatment appeared to enhance the association of Impα and CBP in co-immunoprecipitation experiments. Our results provide evidence for novel functional interactions between the chromatin modification enzyme CBP and nuclear transport proteins in mammalian cells.  相似文献   

5.
6.
7.
8.
《Journal of molecular biology》2014,426(24):4030-4048
The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the cyclic-AMP response element binding binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high-risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low-risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and on the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high-risk HPV16 E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
The activity and stability of the tumor suppressor p53 are regulated by interactions with key cellular proteins such as MDM2 and CBP/p300. The transactivation domain (TAD) of p53 contains two subdomains (AD1 and AD2) and interacts directly with the N-terminal domain of MDM2 and with several domains of CBP/p300. Here we report the NMR structure of the full-length p53 TAD in complex with the nuclear coactivator binding domain (NCBD) of CBP. Both the p53 TAD and NCBD are intrinsically disordered and fold synergistically upon binding, as evidenced by the observed increase in helicity and increased level of dispersion of the amide proton resonances. The p53 TAD folds to form a pair of helices (denoted Pα1 and Pα2), which extend from Phe19 to Leu25 and from Pro47 to Trp53, respectively. In the complex, the NCBD forms a bundle of three helices (Cα1, residues 2066-2075; Cα2, residues 2081-2092; and Cα3, residues 2095-2105) with a hydrophobic groove into which p53 helices Pα1 and Pα2 dock. The polypeptide chain between the p53 helices remains flexible and makes no detectable intermolecular contacts with the NCBD. Complex formation is driven largely by hydrophobic contacts that form a stable intermolecular hydrophobic core. A salt bridge between D49 of p53 and R2105 of NCBD may contribute to the binding specificity. The structure provides the first insights into simultaneous binding of the AD1 and AD2 motifs to a target protein.  相似文献   

20.
Calcium binding protein 40 (CBP40) is a Ca(2+)-binding protein abundant in the plasmodia of Physarum polycephalum. CBP40 consists four EF-hand domains in the COOH-terminal half and a putative alpha-helix domain in the NH(2)-terminal half. We expressed recombinant proteins of CBP40 in Escherichia coli to investigate its Ca(2+)-binding properties. Recombinant proteins of CBP40 bound 4 mol of Ca(2+) with much higher affinity (pCa(1/2) = 6.5) than that of calmodulin. When residues 1-196 of the alpha-helix domain were deleted, the affinity for Ca(2+) decreased to pCa(1/2) = 4.6. A chimeric calmodulin was generated by conjugating the alpha-helix domain of CBP40 with calmodulin. The affinity of Ca(2+) for the chimeric calmodulin was higher than that for calmodulin, suggesting that the alpha-helix domain is responsible for the high affinity of CBP40 for Ca(2+). CBP40 forms large aggregates reversibly in a Ca(2+)-dependent manner. A mutant protein with a deletion of NH(2)-terminal 32 residues, however, could not aggregate, indicating the importance of these residues for the aggregation. The aggregation occurs above micromolar levels of Ca(2+) concentration, so it may only occur when CBP40 is secreted out of the plasmodial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号