首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteolytic conversion of oxytocin and vasopressin by purified rat brain synaptic membranes was studied at 37 degrees C and physiological pH 7.4. The formed peptide fragments were isolated by high performance liquid chromatography and characterized by amino acid analysis. When oxytocin was incubated with synaptic membranes, either C- or N-terminal fragments were found. The most abundant were [Cyt6]oxytocin(4-9), [Cyt6]oxytocin(3-9), [Cyt6]oxytocin(2-9), oxytocin(1-8) and oxytocin(1-7). In contrast, only C-terminal fragments, [Cyt6-Arg8]vasopressin(4-9), [Cyt6-Arg8]vasopressin(3-9) and [Cyt6-Arg8]vasopressin(2-9), were found by incubating [Arg8]vasopressin. The formation of C-terminal oxytocin and vasopressin fragments was inhibited by the aminopeptidase inhibitors amastatin and bestatin, while the formation of oxytocin(1-7) and (1-8) was inhibited by the divalent cations Hg(2+) and Zn(2+). The formation of oxytocin(1-7) was also partially prevented by the endopeptidase inhibitor phosphoramidon. The formation of both C- and N-terminal fragments was inhibited by o-phenanthroline. The results suggest that, while [Arg8]vasopressin is metabolized only by membrane-bound aminopeptidases, oxytocin is also metabolized by membrane-bound endopeptidases.  相似文献   

2.
Vasopressin and oxytocin cause behavioral excitation after intracerebroventricular injection in mice. This effect is short-lasting, suggesting that the peptides are rapidly inactivated in the brain. Co-injection of microgram amounts of amastatin, an aminopeptidase inhibitor, prolonged the effect of both vasopressin and oxytocin. Amastatin did not induce large vasopressin-like behavioral effects by itself, nor did it significantly potentiate the action of 1-deamino[1,6-dicarba, 8-arginine] vasopressin (Asu-AVP), an analog that lacks the N-terminal amino group. The effect of Asu-AVP, but not that of vasopressin, was potentiated by phosphoramidon, an inhibitor of neutral metalloendopeptidase ("enkephalinase A"). These results support previous suggestions that vasopressin and oxytocin are inactivated mainly by aminopeptidase action following intracerebroventricular injection.  相似文献   

3.
Insulin-regulated aminopeptidase (IRAP) is a membrane aminopeptidase and is homologous to the placental leucine aminopeptidase, P-LAP. IRAP has a wide distribution but has been best characterized in adipocytes and myocytes. In these cells, IRAP colocalizes with the glucose transporter GLUT4 to intracellular vesicles and, like GLUT4, translocates from these vesicles to the cell surface in response to insulin. Earlier studies demonstrated that purified IRAP cleaves several peptide hormones and that, concomitant with the appearance of IRAP at the surface of insulin-stimulated adipocytes, aminopeptidase activity toward extracellular substrates increases. In the present study, to identify in vivo substrates for IRAP, we tested potential substrates for cleavage by IRAP-deficient (IRAP(-/-)) and control mice. We found that vasopressin and oxytocin were not processed from the NH(2) terminus by isolated IRAP(-/-) adipocytes and skeletal muscles. Vasopressin was not cleaved from the NH(2) terminus after injection into IRAP(-/-) mice and exhibited a threefold increased half-life in the circulation of IRAP(-/-) mice. Consistent with this finding, endogenous plasma vasopressin levels were elevated twofold in IRAP(-/-) mice, and vasopressin levels in IRAP(-/-) brains, where plasma vasopressin originates, showed a compensatory decrease. We further established that insulin increased the clearance of vasopressin from control but not from IRAP(-/-) mice. In conclusion, we have identified vasopressin as the first physiological substrate for IRAP. Changes in plasma and brain vasopressin levels in IRAP(-/-) mice suggest a significant role for IRAP in regulating vasopressin. We have also uncovered a novel IRAP-dependent insulin effect: to acutely modify vasopressin.  相似文献   

4.
The aminopeptidase activity in the brain which converts vasopressin into centrally active metabolites, was quantitated on basis of the release of 3H-Phe from the substate [3H-Phe3]vasopressin and separation by hydrophobic interaction chromatography on mini-columns. After subcellular fractionation of whole rat brain homogenates the highest specific activity of the peptidase was recovered in membrane fractions, in particular microsomes and the P3 fraction, and the cytosol. The peptidase activity was present in all brain areas. Highest activity was measured in membranes of the bulbus olfactorius, preoptical area and cerebellum. Lowest activity was found in the medulla oblongata and striatum. The peptidase activity is not restricted to the vasopressin system per se, but may have a more general role in neuropeptide metabolism.  相似文献   

5.
Metabolic diseases affect various organs including the brain. Accumulation or depletion of substrates frequently leads to brain injury and dysfunction. Deficiency of aminopeptidase P1, a cytosolic proline‐specific peptidase encoded by the Xpnpep1 gene, causes an inborn error of metabolism (IEM) characterized by peptiduria in humans. We previously reported that knockout of aminopeptidase P1 in mice causes neurodevelopmental disorders and peptiduria. However, little is known about the pathophysiological role of aminopeptidase P1 in the brain. Here, we show that loss of aminopeptidase P1 causes behavioral and neurological deficits in mice. Mice deficient in aminopeptidase P1 (Xpnpep1?/?) display abnormally enhanced locomotor activities in both the home cage and open‐field box. The aminopeptidase P1 deficiency in mice also resulted in severe impairments in novel‐object recognition, the Morris water maze task, and contextual, but not cued, fear memory. These behavioral dysfunctions were accompanied by epileptiform electroencephalogram activity and neurodegeneration in the hippocampus. However, mice with a heterozygous mutation for aminopeptidase P1 (Xpnpep1+/?) exhibited normal behaviors and brain structure. These results suggest that loss of aminopeptidase P1 leads to behavioral, cognitive and neurological deficits. This study may provide insight into new pathogenic mechanisms for brain dysfunction related to IEMs.  相似文献   

6.
C Gros  B Giros  J C Schwartz 《Biochemistry》1985,24(9):2179-2185
Two membrane-bound enkephalin-hydrolyzing aminopeptidase activities were partially purified from rat brain membranes. The first, which represents 90% of the total activity, was highly sensitive to both puromycin (Ki = 1 microM) and bestatin (Ki = 0.5 microM). The second was inhibited much more by bestatin (Ki = 4 microM) than by puromycin (Ki = 100 microM). The latter puromycin-insensitive aminopeptidase was found to resemble aminopeptidase M purified from rat kidney brush border membranes. Both displayed the same purification pattern and the same kinetic constants of substrates and inhibitors, and both were similarly inactivated by metal chelating agents. Moreover, antibodies raised in rabbits against rat kidney aminopeptidase M inhibited the aminopeptidase activities of both kidney and brain puromycin-insensitive enzymes at similar dilutions, while the brain puromycin-sensitive aminopeptidase activity was not affected. Thus, aminopeptidase M (EC 3.4.11.2) was found to occur in brain, and the role of this enzyme in inactivating endogenous enkephalins released from their neuronal stores is suggested.  相似文献   

7.
A dipeptidyl aminopeptidase (a membrane-bound enzyme) which cleaved Met-enkephalin and released dipeptide (Tyr-Gly) was partially purified from monkey brain. A fraction containing both exoaminopeptidase and dipeptidyl aminopeptidase activity was obtained from DE-52 cellulose column chromatography. The dipeptidyl aminopeptidase activity in this fraction was not inhibited by addition of bestatin (300 μg/ml), while the exoaminopeptidase was strongly inhibited. Both enzymes were separated by AH-Sepharose 4B column chromatography. The molecular weight of the dipeptidyl aminopeptidase was calculated about 110,000. The enzyme activity was inhibited by addition of diisopropylfluorophosphate (DFP) or o-phenanthroline.  相似文献   

8.
Using leucine-p-nitroanilide (Leu-pNA) as a substrate, we demonstrated aminopeptidase activity in the culture filtrates of several Pseudomonas aeruginosa strains. The aminopeptidase was partially purified by DEAE-cellulose chromatography and found to be heat stable. The apparent molecular mass of the enzyme was approximately 56 kDa; hence, it was designated AP(56). Heating (70 degrees C) of the partially purified aminopeptidase preparations led to the conversion of AP(56) to a approximately 28-kDa protein (AP(28)) that retained enzyme activity, a reaction that depended on elastase (LasB). The pH optimum for Leu-pNA hydrolysis by AP(28) was 8.5. This activity was inhibited by Zn chelators but not by inhibitors of serine- or thiol-proteases, suggesting that AP(28) is a Zn-dependent enzyme. Of several amino acid p-nitroanilide derivatives examined, Leu-pNA was the preferred substrate. The sequences of the first 20 residues of AP(56) and AP(28) were determined. A search of the P. aeruginosa genomic data base revealed a perfect match of these sequences with positions 39-58 and 273-291, respectively, in a 536-amino acid residue open reading frame predicted to encode an aminopeptidase. A search for sequence similarities with other proteins revealed 52% identity with Streptomyces griseus aminopeptidase, approximately 35% identity with Saccharomyces cerevisiae aminopeptidase Y and a hypothetical aminopeptidase from Bacillus subtilis, and 29-32% with Aeromonas caviae, Vibrio proteolyticus, and Vibrio cholerae aminopeptidases. The residues potentially involved in zinc coordination were conserved in all these proteins. Thus, P. aeruginosa aminopeptidase may belong to the same family (M28) of metalloproteases.  相似文献   

9.
In human cerebrospinal fluid, aminopeptidase, dipeptidyl aminopeptidase, dipeptidyl carboxypeptidase, and carboxypeptidase which were capable of hydrolyzing enkephalins were detected. Among these enzymes, two distinct aminopeptidase, designated C-AP1 and C-AP2, were partially purified. These enzymes were not purified thoroughly, but the characteristics of C-AP2 were similar to those of an aminopeptidase purified from monkey brain. But the inhibitory activity of amastatin on C-AP2 was stronger, and that of substance P was negligible. On the other hand, characteristics of C-Ap1 were extremely differ from those of C-AP2 or an aminopeptidase purified from monkey brain. C-AP1 had an optimum pH more in the acidic range (the highest at pH 6.0) and was not inhibited by any of the protease inhibitor tested including bestatin and amastatin.  相似文献   

10.
Behavioural actions of neurohypophysial peptides   总被引:2,自引:0,他引:2  
The neurohypophysial hormones vasopressin and oxytocin modulate memory processes. Vasopressin facilitates while oxytocin attenuates memory consolidation and retrieval. These influences are located in different regions of the molecules. Thus, the neurohypophysial hormones act as precursor molecules for neuropeptides involved in memory processes. The covalent ring structures of both vasopressin and oxytocin mainly affect consolidation, the linear parts, retrieval processes, while nearly the whole oxytocin or vasopressin molecule is needed for attenuation of consolidation and retrieval. Regional studies by microdissection techniques in combination with a sensitive radioenzymatic catecholalmine assay, indicate that vasopressin modulates memory processes by modulation of neurotransmission in distinct catecholamine systems. Recent experiments suggest that the influence of vasopressin on memory consolidation is mediated by the dorsal noradrenergic bundle via terminal regions of this bundle. Studies on the conversion of oxytocin in synaptosomal plasma membrane preparations of rat limbic brain suggest the possible generation of fragments with specific effects on memory processes. Regional differences in enzyme activity further substantiate the implication of oxytocin as a prohormone in this respect. Clinical studies support the evidence from laboratory findings that vasopressin is also involved in memory processes in man.  相似文献   

11.
B Liu  J P Burbach 《Peptides》1988,9(5):973-978
Vasopressin levels and vasopressin-converting aminopeptidase activity were measured in the rat pineal gland during the 24 hr light-dark cycle. A rhythmic variation in peptide levels and peptidase activity occurred. At the onset of light at 6.00 hr, the peptidase displayed a significant, short-lasting (approximately 3 hr) increase of about 35% in activity, while a decrease of 28% in pineal vasopressin levels was observed. The changes in peptidase activity and peptide level were not triggered by light per se, since they persisted to occur at the same time point in animals which were not exposed to light, indicating the circadian nature of the rhythmicity. These changes were specific to the pineal gland, since other tissues, like hippocampus and pituitary gland, did not show these daily variations. The data suggest a relationship between vasopressin levels and vasopressin-converting aminopeptidase activity.  相似文献   

12.
The possibility of sequence-dependent, transient, and local inhibition of neuropeptide or neuropeptide receptor expression within the brain makes antisense targeting an attractive approach for those interested in the involvement of brain neuropeptide systems in behavioral and neuroendocrine regulation. Here, I describe our attempts to manipulate the synthetic activity of peptidergic systems of the hypothalamic-neurohypophysial system, i.e. , oxytocin and vasopressin, and the hypothalamic-pituitary-adrenal (HPA) axis by antisense oligodeoxynucleotides. Detailed experimental protocols including different approaches for intracerebral antisense application in anesthetized or conscious rats are provided. As a consequence of local oxytocin or vasopressin antisense treatment within the hypothalamic supraoptic nucleus, various aspects of the neuronal activity are already altered after a few hours. Thus, we monitored electrophysiological parameters of oxytocinergic and vasopressinergic neurons, stimulus-induced expression of the Fos protein in oxytocin neurons, and stimulated release of oxytocin or vasopressin into blood as well as within the hypothalamus by dendrites and cell bodies as measured by simultaneous microdialysis in blood and brain, shortly after a single acute antisense infusion. We also employed chronic antisense infusion via osmotic minipumps or by repeated local infusion into the targeted brain region; for example, septal vasopressin receptor downregulation impairs the ability of male rats to discriminate between juvenile rats. Further, reduction of the amount of available CRH, vasopressin, and oxytocin within the hypothalamic paraventricular nuclei alters the neuroendocrine stress response of the HPA axis.  相似文献   

13.
Various angiotensins, bradykinins, and related peptides were examined for their inhibitory activity against several enkephalin-degrading enzymes, including an aminopeptidase and a dipeptidyl aminopeptidase, purified from a membrane-bound fraction of monkey brain, and an endopeptidase, purified from the rabbit kidney membrane fraction. Angiotensin derivatives having a basic or neutral amino acid at the N-terminus showed strong inhibition of the aminopeptidase. Dipeptidyl aminopeptidase was inhibited by angiotensins II and III and their derivatives, whereas the endopeptidase was inhibited by angiotensin I and its derivatives. The most potent inhibitor of aminopeptidase and dipeptidyl aminopeptidase was angiotensin III, which completely inhibited the degradation of enkephalin by enzymes in monkey brain or human CSF. The Ki values for angiotensin III against aminopeptidase, dipeptidyl aminopeptidase, endopeptidase, and angiotensin-converting enzyme, which degraded enkephalin, were 0.66 X 10(-6), 1.03 X 10(-6), 2.3 X 10(-4), and 1.65 X 10(-6) M, respectively. Angiotensin III potentiated the analgesic activity of Met-enkephalin after intracerebroventricular coadministration to mice in the hot plate test. Angiotensin III itself also displayed analgesic activity in that test. These actions were blocked by the specific opiate antagonist naloxone.  相似文献   

14.
The effect of vasopressin on adenylate cyclase activity was measured in the homogenates of selected rat brain regions. Adenylate cyclase activity in homogenate of the caudate nucleus did not change significantly with various concentrations of vasopressin. Furthermore, vasopressin did not reliably alter adenylate cyclase activity in various brain regions. Vasopressin in low concentrations significantly enhanced the activation of caudate adenylate cyclase activity by dopamine. This effect of vasopressin was dose dependent. Maximal enhancement by vasopressin occurred at 100 microM vasopressin. These results indicate that vasopressin may not have a direct effect on brain adenylate cyclase activity but appears to modulate the action of dopamine on brain adenylate cyclase.  相似文献   

15.
16.
Aminopeptidases (APs) play a major role in the metabolism of circulating and local peptides, such as angiotensins and vasopressin, substances involved in the control of blood pressure and water balance. In the present work, we studied the influence of dehydration on angiotensinases and vasopressin-degrading activity. Since sex differences may exist in the regulation of water balance by angiotensin II and differential sexual steroid modulation of vasopressin secretion, in response to osmotic stimulation have been reported, gonadotropin releasing hormone (GnRH)-degrading activity was also analysed in serum, neurohypophysis and adrenal glands of male and female rats. Our results did not suggest sex differences in the response to changes in osmolality. GnRH-degrading activity decreased in serum of dehydrated males and females, which suggests a longer action of the peptide under these conditions. In neurohypophysis, there was an increase in the activity of aminopeptidase A (APA), the enzyme responsible for the metabolism of angiotensin II to angiotensin III. This occurs with a decrease in alanyl aminopeptidase activity, which would lead to a prolonged action of angiotensin III by reduction of its metabolism. In adrenals of dehydrated animals, the results would imply a high degree of metabolism of angiotensin III and vasopressin.  相似文献   

17.
In this paper we report that while 55% of the total post-proline dipeptidyl-aminopeptidase activity in guinea-pig brain is associated with the soluble fraction of the cells, the remaining activity is widely distributed throughout the particulate fractions. A significant portion of this particulate activity is, however, associated with a synaptosomal membrane fraction. The specific activity of this enzyme rose as the synaptosomal membrane fraction was prepared from a synaptosomal fraction and had previously risen at the synaptosomal fraction was prepared from a postmitochondrial pellet. The synaptosomal membrane post-proline dipeptidyl-aminopeptidase was released from the membrane by treatment with Triton X-100 and partially purified by chromatography on Sephadex G-200. By contrast with the soluble enzyme the partially purified solubilised synaptosomal membrane post-proline dipeptidyl-aminopeptidase was not inhibited by 1.0 mM p-chloromercuribenzoate, 1.0 mM N-ethylmaleimide or 0.5 mM puromycin but was inhibited by 0.5 mM bacitracin. The partially purified solubilised enzyme was capable of releasing His-Pro from His-Pro-Val, His-Pro-Leu, His-Pro-Phe and His-Pro-Tyr and of releasing Gly-Pro from Gly-Pro-Ala but could not release Arg-Pro from Arg-Pro-Pro or from Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg (bradykinin). It was also unable to release Pro-Pro from Pro-Pro-Gly or Glp-Pro from Glp-Pro-Ser-Lys-Asp-Ala-Phe-Ile-Gly-Leu-MetNH2 (eledoisin). Using [Pro-3H]thyroliberin we show that the membrane-bound enzyme converts His-ProNH2, produced by the action of the synaptosomal membrane pyroglutamate aminopeptidase, to His-Pro thus competing with the spontaneous cyclisation of His-ProNH2 to His-Pro diketopiperazine. Purified preparations of synaptosomal membrane pyroglutamate aminopeptidase were used to generate His-ProNH2, which could then be converted to His-Pro by the presence of the partially purified synaptosomal membrane post-proline dipeptidyl-aminopeptidase. This preparation was free of contaminating post-proline cleaving endopeptidase, carboxypeptidase P, aminopeptidase P, prolyl carboxypeptidase or proline dipeptidase.  相似文献   

18.
An aminopeptidase with specificity directed toward peptides with acidic N-terminal amino acid residues has been isolated from mouse brain cytosol. Purification by ion-exchange chromatography and gel filtration resulted in an enzyme that hydrolyzed aspartyl-phenylala-nine methyl ester at a rate of 13.2 μu,mol/min/mg protein at pH 7.5, an increase in specific activity of 1000-fold over that of brain homogenate. Its apparent molecular weight, determined by gel filtration, is ?450,000. Dipeptides with N-terminal aspartyl residues are cleaved preferentially to glutamic-containing analogs, and a neutral amino acid (or histidine) is necessary in the adjacent position. For pep-tides of the form aspartyl-X, relative activity was 100, 81, 71, 66, 19, or 0, where X was alanine, serine, leucine, phenylalanine, histidine, or proline, respectively. Tripep-tides were more rapidly hydrolyzed than dipeptides; however, activity tended to decline with increasing chain length. The acidic aminopeptidase can account for almost all of the activity of brain cytosol toward the N-terminal aspartyl residue of angiotensin II, aspartyl-phenylalanine methyl ester or aspartyl-alanine, and the N-terminal glu-tamyl residue of adrenocorticotropin(5-10). The enzyme was unaffected by bestatin or amastatin. It was inhibited by o-phenanthroline and EDTA. The latter effect could be reversed completely by Zn2+ and partially by Mn2+ or Mg2+; Co2+ and Fe2+ had no effect; Ca2+ was inhibitory. These properties distinguish the brain acidic aminopeptidase from aminopeptidase A isolated from human serum or pig kidney and the aspartyl aminopeptidase of dog kidney.  相似文献   

19.
The abnormal vascular system of brain cancers inappropriately expresses membrane proteins, including proteolytic enzymes, ultimately resulting in blood extravasation. The production of inflammatory mediators, such as cytokines and nitric oxide, and tumor hypoxia have been implicated in these effects. We have previously shown that the activity of aminopeptidase A is increased in the abnormal vascular system of human and rat brain tumors. To study the mechanisms regulating the activities of peptidases in cerebral vasculature in brain tumors, we have developed a three-dimensional model of differentiated rat brain cells in aggregate cultures in which rat brain microvessels were incorporated. The secretion of interleukin-6 (IL-6) in the culture medium of aggregates was used as an indicator of inflammatory activation. Addition to these aggregates of C6 glioma cell medium (C6-CM) conditioned under hypoxic or normoxic conditions or serum mimicked tumor-dependent hypoxia or conditions of dysfunction of brain tumor vasculature. Hypoxic and normoxic C6-CM, but not serum, regulated peptidase activity in aggregates, and in particular it increased the activity of aminopeptidase A determined using histoenzymography. Serum, but not C6-CM, increased IL-6 production, but did not increase aminopeptidase A activity in aggregates. Thus soluble glioma-derived factors, but not serum-derived factors, induce dysfunctions of cerebral vasculature by directly regulating the activity of peptidases, not involving inflammatory activation. Tumor hypoxia is not necessary to modulate peptidase activity.  相似文献   

20.
The brain vasopressin system mediates various social behaviors as has been studied mostly in males. Only recently, advances in social neuroscience revealed that central vasopressin signaling via its V1a and V1b receptors also facilitates female social behavior, including maternal behavior. In this review, we show how maternal care, maternal motivation and maternal aggression of lactating rat mothers are modulated in a V1 receptor subtype‐ and brain region‐specific manner. Measuring local release pattern of vasopressin via intracerebral microdialysis in the behaving rat mother as well as using pharmacological approaches to activate or block vasopressin receptors with subsequent behavioral observation provide detailed insight into the functional role of the vasopressin system in maternal behavior. In this context, the complementary rat animal model of high (HAB) and low anxiety‐related behavior (LAB) is particularly helpful due to the genetically determined high activity of the vasopressin gene in HAB rats, which also underlies their high levels of maternal behavior. Furthermore, first studies in humans indicate that the vasopressin system in general and the V1a receptor in more particular might mediate mothering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号