共查询到20条相似文献,搜索用时 15 毫秒
1.
The broad linewidths in absorption spectra of photosynthetic complexes obscure information related to their structure and function. Photon echo techniques represent a powerful class of time-resolved electronic spectroscopy that allow researchers to probe the interactions normally hidden under broad linewidths with sufficient time resolution to follow the fastest energy transfer events in light harvesting. Here, we outline the technical approach and applications of two types of photon echo experiments: the photon echo peak shift and two-dimensional (2D) Fourier transform photon echo spectroscopy. We review several extensions of these techniques to photosynthetic complexes. Photon echo peak shift spectroscopy can be used to determine the strength of coupling between a pigment and its surrounding environment including neighboring pigments and to quantify timescales of energy transfer. Two-dimensional spectroscopy yields a frequency-resolved map of absorption and emission processes, allowing coupling interactions and energy transfer pathways to be viewed directly. Furthermore, 2D spectroscopy reveals structural information such as the relative orientations of coupled transitions. Both classes of experiments can be used to probe the quantum mechanical nature of photosynthetic light-harvesting: peak shift experiments allow quantification of correlated energetic fluctuations between pigments, while 2D techniques measure quantum beating directly, both of which indicate the extent of quantum coherence over multiple pigment sites in the protein complex. The mechanistic and structural information obtained by these techniques reveals valuable insights into the design principles of photosynthetic light-harvesting complexes, and a multitude of variations on the methods outlined here. 相似文献
2.
Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria
下载免费PDF全文

Psencík J Ikonen TP Laurinmäki P Merckel MC Butcher SJ Serimaa RE Tuma R 《Biophysical journal》2004,87(2):1165-1172
Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the chlorosome structure has not been resolved and only models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze-fracture electron microscopy and spectroscopic constraints. We have obtained the first high-resolution images of chlorosomes from the green sulfur bacterium Chlorobium tepidum by cryoelectron microscopy. Cryoelectron microscopy images revealed dense striations approximately 20 A apart. X-ray scattering from chlorosomes exhibited a feature with the same approximately 20 A spacing. No evidence for the rod models was obtained. The observed spacing and tilt-series cryoelectron microscopy projections are compatible with a lamellar model, in which BChl molecules aggregate into semicrystalline lateral arrays. The diffraction data further indicate that arrays are built from BChl dimers. The arrays form undulating lamellae, which, in turn, are held together by interdigitated esterifying alcohol tails, carotenoids, and lipids. The lamellar model is consistent with earlier spectroscopic data and provides insight into chlorosome self-assembly. 相似文献
3.
Luimstra Veerle M. Schuurmans J. Merijn de Carvalho Carolina F. M. Matthijs Hans C. P. Hellingwerf Klaas J. Huisman Jef 《Photosynthesis research》2019,141(3):291-301
Photosynthesis Research - The ubiquitous chlorophyll a (Chl a) pigment absorbs both blue and red light. Yet, in contrast to green algae and higher plants, most cyanobacteria have much lower... 相似文献
4.
Photoprotection of the chloroplast is an important component of abiotic stress resistance in plants. Carotenoids have a central
role in photoprotection. We review here the recent evidence, derived mainly from in vitro reconstitution of recombinant Lhc proteins with different carotenoids and from carotenoid biosynthesis mutants, for the existence
of different mechanisms of photoprotection and regulation based on xanthophyll binding to Lhc proteins into multiple sites
and the exchange of chromophores between different Lhc proteins during exposure of plants to high light stress and the operation
of the xanthophyll cycle. The use of recombinant Lhc proteins has revealed up to four binding sites in members of Lhc families
with distinct selectivity for xanthophyll species which are here hypothesised to have different functions. Site L1 is selective
for lutein and is here proposed to be essential for catalysing the protection from singlet oxygen by quenching chlorophyll
triplets. Site L2 and N1 are here proposed to act as allosteric sites involved in the regulation of chlorophyll singlet excited
states by exchanging ligand during the operation of the xanthophyll cycle. Site V1 of the major antenna complex LHC II is
here hypothesised to be a deposit for readily available substrate for violaxanthin de-epoxidase rather than a light harvesting
pigment. Moreover, xanthophylls bound to Lhc proteins can be released into the lipid bilayer where they contribute to the
scavenging of reactive oxygen species produced in excess light.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
5.
Models describing the light response of photosynthetic electron transport rate (ETR) are routinely used to determine how light absorption influences energy, reducing power and yields of primary productivity; however, no single model is currently able to provide insight into the fundamental processes that implicitly govern the variability of light absorption. Here we present development and application of a new mechanistic model of ETR for photosystem II based on the light harvesting (absorption and transfer to the core ‘reaction centres’) characteristics of photosynthetic pigment molecules. Within this model a series of equations are used to describe novel biophysical and biochemical characteristics of photosynthetic pigment molecules and in turn light harvesting; specifically, the eigen-absorption cross-section and the minimum average lifetime of photosynthetic pigment molecules in the excited state, which describe the ability of light absorption of photosynthetic pigment molecules and retention time of excitons in the excited state but are difficult to be measured directly. We applied this model to a series of previously collected fluorescence data and demonstrated that our model described well the light response curves of ETR, regardless of whether dynamic down-regulation of PSII occurs, for a range of photosynthetic organisms (Abies alba, Picea abies, Pinus mugo and Emiliania huxleyi). Inherent estimated parameters (e.g. maximum ETR and the saturation irradiance) by our model are in very close agreement with the measured data. Overall, our mechanistic model potentially provides novel insights into the regulation of ETR by light harvesting properties as well as dynamical down-regulation of PSII. 相似文献
6.
Plants usually respond to the changes of growth irradiance by a combination of the physiological modifications in their preexisting leaves and the production of new leaves. However, those with a determinate growth habit produce certain number of leaves in a growing season and cannot produce new leaves when light condition changes. We used an epiphytic orchid with only one leaf produced every growing season to examine whether and how determinate growth species adapt to changing environments after their preexisting leaves mature. Leaf photosynthesis and anatomy of Pleione aurita were investigated at full expansion and at 40 days after the fully expanded leaves were transferred from high to low light or from low to high light. Leaves show large physiological and morphological plasticity to light gradients at full expansion and the transferred leaves exhibited multiple physiological modifications, including reallocation of nitrogen between light harvesting and carbon fixation, and enhancement of thermal dissipation in their new environments, to optimize carbon assimilation and avoid photoinhibition. Irrespective of the various changes either to shade or sun, the sole preexisting leaf could not fully acclimate to new light environments due to the mesophyll thickness constraint. This leads to the consequence that only plants exposed to high light throughout the experiment had a positive annual biomass gain. Our results highlighted the importance of new leaf production in the carbon accumulation during photosynthetic light acclimation, and contribute new insights of epiphytes physiological responses to their highly dynamic arboreal habitat. 相似文献
7.
Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment 总被引:3,自引:0,他引:3
Microalgal productivity was examined using both a wild type and a phycocyanin-deficient mutant of Synechocystis PCC 6714 (PD-1).
The culture was conducted at various light intensities under low and high cell densities in a continuous culture system. At
low light intensity, photosynthetic productivity was almost the same for both low and high cell densities. However, at higher
light intensities photosynthetic productivity was higher in mutant PD-1 than in the wild type. At 2000 μmol photon m−2 s−1 the productivity was 50% higher in mutant PD-1. This result is consistent with our first report (Nakajima & Ueda, 1997),
which showed that photosynthetic productivity can be improved by reducing the light harvesting pigment content in high cell
density cultures at high light intensities. It is concluded that the technology for reducing LHP content is a useful method
for improving photosynthetic productivity in algal mass production.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
8.
Characterization of ATDRG1, a member of a new class of GTP-binding proteins in plants 总被引:4,自引:0,他引:4
Etheridge Naomi Trusov Yuri Verbelen Jean Pierre Botella José Ramón 《Plant molecular biology》1999,39(6):1113-1126
We report the initial characterization of an Arabidopsis thaliana cDNA (atdrg1), a member of a new class of GTP-binding proteins (G-proteins) in plants. The predicted ATDRG1 protein contains all five structural motifs characteristic of the G-protein superfamily. Apart from these motifs, the amino acid sequence differs substantially from all known G-proteins except for a recently discovered new family named developmentally regulated G-proteins (DRGs). Sequences closely related to atdrg1 are found in species as distant as human (80% amino acid conservation), Drosophila (74%), yeast (77%) and Caenorhabditis elegans (77%). The remarkable evolutionary conservation of these proteins suggests an important, but as yet unclear role. Phylogenetic analysis of the available homologous sequences strongly suggests a diphyletic origin of the eukaryotic DRG proteins. Northern analysis shows high levels of atdrg1 mRNA in all Arabidopsis tissues studied, and homologues of atdrg1 are present throughout the plant kingdom. In situ hybridization reveals that atdrg1 is highly expressed in actively growing tissues and reproductive organs. Southern analysis indicates the presence of either one or two copies of atdrg1 in the Arabidopsis genome. Immunolocalization studies show that the protein is present in cytoplasmic vesicles found mainly in actively growing tissues suggesting a putative role for ATDRG1 in either the regulation of vesicle transport or the regulation of enzymes involved in storage protein processing. 相似文献
9.
Irina Grouneva Peter J. Gollan Saijaliisa Kangasjärvi Marjaana Suorsa Mikko Tikkanen Eva-Mari Aro 《Planta》2013,237(2):399-412
The comparative study of photosynthetic regulation in the thylakoid membrane of different phylogenetic groups can yield valuable insights into mechanisms, genetic requirements and redundancy of regulatory processes. This review offers a brief summary on the current understanding of light harvesting and photosynthetic electron transport regulation in different photosynthetic eukaryotes, with a special focus on the comparison between higher plants and unicellular algae of secondary endosymbiotic origin. The foundations of thylakoid structure, light harvesting, reversible protein phosphorylation and PSI-mediated cyclic electron transport are traced not only from green algae to vascular plants but also at the branching point between the “green” and the “red” lineage of photosynthetic organisms. This approach was particularly valuable in revealing processes that (1) are highly conserved between phylogenetic groups, (2) serve a common physiological role but nevertheless originate in divergent genetic backgrounds or (3) are missing in one phylogenetic branch despite their unequivocal importance in another, necessitating a search for alternative regulatory mechanisms and interactions. 相似文献
10.
Multichannel carotenoid deactivation in photosynthetic light harvesting as identified by an evolutionary target analysis 总被引:2,自引:0,他引:2
下载免费PDF全文

A new channel of excitation energy deactivation in bacterial light harvesting was recently discovered, which leads to carotenoid triplet population on an ultrafast timescale. Here we show that this mechanism is also active in LH2 of Rhodopseudomonas acidophila through analysis of transient absorption data with an evolutionary target analysis. The algorithm offers flexible testing of kinetic network models with low a priori knowledge requirements. It applies universally to the simultaneous fitting of target state spectra and rate constants to time-wavelength-resolved data. Our best-fit model reproduces correctly the well-known cooling and decay behavior in the S(1) band, but necessitates an additional, clearly distinct singlet state that does not exchange with S(1), promotes ultrafast triplet population and participates in photosynthetic energy transfer. 相似文献
11.
The pigments of the chromophyte freshwater alga, Chrysophaera magna Belcher were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) to reveal the presence of chlorophylls a and c, β-carotene, fucoxanthin, and antheraxanthin. The presence of antheraxanthin was verified by comparison of TLC RF values, HPLC retention times, and absorption features to those of authentic, synthetic antheraxanthin. Antheraxanthin accounted for about 15% of the total carotenoid content of C. magna. The molar ratio of the major carotenoids was antheraxanthin:fucoxanthin:β-carotene, 1:2.3:3.3. The whole-cell absorption spectrum revealed a broad band between 470 and 520 nanometers which was attributed to fucoxanthin and antheraxanthin in vivo. Upon extraction in hydrocarbon, this broad absorption region was lost. The in vivo fluorescence excitation spectrum for 680 nm emission revealed the energy transfer activities and light harvesting roles of chlorophylls a and c, and fucoxanthin. In addition, an excitation band was resolved at 487 nanometers which could be attributed only to antheraxanthin. Comparison of whole-cell fluorescence excitation spectra of C. magna with the diatom Phaeodactylum tricornutum, which possesses fucoxanthin but not antheraxanthin, supports the assignment of the 487 nm band to antheraxanthin. This is the first report of a photosynthetic light harvesting function of the xanthophyll, antheraxanthin. This carotenoid broadens the absorption cross-section for photosynthesis in C. magna and extends light harvesting into the green portion of the spectrum. 相似文献
12.
The photosynthetic unit of Rhodopseudomonas viridis contains a reaction centre (P960) and a light harvesting complex (B1015). Immune electron microscopy combined with image processing has allowed the central core of the photosynthetic unit to be identified as the reaction centre and the surrounding protein ring as the light harvesting complex. This light harvesting complex, subdivided into twelve subunits was shown to contain 24 bacteriochlorophyll b molecules. A model is presented which may account for the far red shift of the Qy absorption of the bacteriochlorophyll b molecules in vivo. 相似文献
13.
Alexander V Ruban Andrew A Pascal Bruno Robert Peter Horton 《The Journal of biological chemistry》2002,277(10):7785-7789
By dynamic changes in protein structure and function, the photosynthetic membranes of plants are able to regulate the partitioning of absorbed light energy between utilization in photosynthesis and photoprotective non-radiative dissipation of the excess energy. This process is controlled by features of the intact membrane, the transmembrane pH gradient, the organization of the photosystem II antenna proteins and the reversible binding of a specific carotenoid, zeaxanthin. Resonance Raman spectroscopy has been applied for the first time to wild type and mutant Arabidopsis leaves and to intact thylakoid membranes to investigate the nature of the absorption changes obligatorily associated with the energy dissipation process. The observed changes in the carotenoid Resonance Raman spectrum proved that zeaxanthin was involved and indicated a dramatic change in zeaxanthin environment that specifically alters the pigment configuration and red-shifts the absorption spectrum. This activation of zeaxanthin is a key event in the regulation of light harvesting. 相似文献
14.
Daniel Emlyn-Jones Mark K. Ashby & Conrad W. Mullineaux 《Molecular microbiology》1999,33(5):1050-1058
A gene required for the short-term regulation of photosynthetic light harvesting (the state transition) has been identified in the cyanobacterium Synechocystis sp. PCC6803. The open reading frame is designated sll1926 in the complete Synechocystis gene sequence. The deduced amino acid sequence has no homologues in current sequence databases and no recognizable sequence motifs. It encodes a putative integral membrane protein of 16 kDa, which we have designated RpaC (regulator of phycobilisome association C). Fluorescence measurements of an insertional inactivation mutant of rpaC (Deltasll1926) show that it is specifically unable to perform state transitions. Deltasll1926 has approximately wild-type levels of PS1, PS2 and phycobilisomes. Measurements of oxygen evolution and uptake show Deltasll1926 to have no deficiency in electron transport rates. In vitro [gamma-32P]-ATP labelling experiments suggest that RpaC is not the 15 kDa membrane phosphoprotein previously implicated in state transitions. Deltasll1926 grows more slowly than the wild type only at very low light intensities. 相似文献
15.
Li XP Gilmore AM Caffarri S Bassi R Golan T Kramer D Niyogi KK 《The Journal of biological chemistry》2004,279(22):22866-22874
The biochemical, biophysical, and physiological properties of the PsbS protein were studied in relation to mutations of two symmetry-related, lumen-exposed glutamate residues, Glu-122 and Glu-226. These two glutamates are targets for protonation during lumen acidification in excess light. Mutation of PsbS did not affect xanthophyll cycle pigment conversion or pool size. Plants containing PsbS mutations of both glutamates did not have any rapidly inducible nonphotochemical quenching (qE) and had similar chlorophyll fluorescence lifetime components as npq4-1, a psbS deletion mutant. The double mutant also lacked a characteristic leaf absorbance change at 535 nm (DeltaA535), and PsbS from these plants did not bind dicyclohexylcarbodiimide (DCCD), a known inhibitor of qE. Mutation of only one of the glutamates had intermediate effects on qE, chlorophyll fluorescence lifetime component amplitudes, DCCD binding, and DeltaA535. Little if any differences were observed comparing the two single mutants, suggesting that the glutamates are chemically and functionally equivalent. Based on these results a bifacial model for the functional interaction of PsbS with photosystem II is proposed. Furthermore, based on the extent of qE inhibition in the mutants, photochemical and nonphotochemical quenching processes of photosystem II were associated with distinct chlorophyll fluorescence life-time distribution components. 相似文献
16.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl
Chlorophyll
- CL
Continuous light
- CPa
the reaction center complex of PSII
- CPI
the reaction center complex of PSI
- CPIa
Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI
- fr w
fresh weight
- LDC
Light dark cycles
- LHC-I
Light-harvesting complex of PSI
- LHC-II
Light harvesting complex of PSII
- PS
photosystem
- PSI
photosystem I
- PSII
photosystem II 相似文献
17.
1. Rifamazine (AF/RP) a dimeric rifamycin, is active against bacterial DNA-dependent RNA polymerase and against viral RNA-dependent DNA polymerase. 2. Rifamazine is active also against DNA-dependent RNA polymerase extracted from rifampicin-resistant mutants of Escherichia coli. It does not interfere with enzyme-template interaction or with RNA elongation. It blocks initiation. 3. A comparison is made between the mechanism of action of rifamazine and that of rifampicin, and of AF/013 (octyloxime of 3-formylrifamycin SV), a C-class rifamycin. Our results show that the mechanism of action of rifamazine is more similar to that of rifampicin than to that of the octyloxime derivative. 4. Activity of rifamazine against RNA polymerase from rifampicin-resistant mutants is thought to be due to binding of the dimer to both the rifamycin-specific binding site and to a second weak site. 相似文献
18.
It has been hypothesized that xylanase inhibitors play important roles in plant defense against microbial pathogens. Currently, there is little information available about xylanase inhibitor OsXIP in rice and its gene expression. We cloned a xylanase inhibitor gene OsXIP from rice (Oryza sativa L. cv. Nipponbare) genomic DNA. To determine the function of OsXIP, we generated OsXIP-overexpressing transgenic rice plants. The transgenic plants had significantly higher OsXIP expression and showed enhanced defense response to Magnaporthe oryzae compared to the wild-type plants. The results also showed that the increased OsXIP expression was accompanied by the up-regulation of pathogenesisrelated genes. To clarify the OsXIP expression pattern, a ProOsXIP::GUS vector was constructed and transgenic plants were obtained. GUS staining results revealed that OsXIP showed organ-specific expressions in rice plants. OsXIP was primarily expressed in the roots and in the veins, but it was weakly expressed in the leaves. Analyses of the OsXIP expression in response to biotic and abiotic stresses indicated that it was drastically induced by biotic stresses and methyl jasmonate treatment. OsXIP, a member of a new class of antifungal proteins, may function as a barrier that prevents the cell wall degradation by xylanases excreted by fungal pathogens. The OsXIP was found to be a stressresponsive gene and it could take part in plant defense via a JA-mediated signaling pathway. 相似文献
19.
A member of a new class of GTP cyclohydrolases produces formylaminopyrimidine nucleotide monophosphates 总被引:3,自引:0,他引:3
The hyperthermophilic euryarchaeon Methanococcus jannaschii has no recognizable homologues of the canonical GTP cyclohydrolase enzymes that are required for riboflavin and pteridine biosyntheses. Instead, it uses a new type of thermostable GTP cyclohydrolase enzyme that produces 2-amino-5-formylamino-6-ribofuranosylamino-4(3H)-pyrimidinone ribonucleotide monophosphate and inorganic phosphate. Whereas canonical GTP cyclohydrolases produce this formylamino-pyrimidine nucleotide as a reaction intermediate, this compound is shown to be an end product of the purified recombinant M.jannaschii enzyme. Unlike other enzymes that hydrolyze the alpha-beta phosphate anhydride bond of GTP, this new enzyme completely hydrolyzes pyrophosphate to inorganic phosphate. As a result, the enzyme has a steady-state turnover of 21 min(-)(1), which is much faster than those of canonical GTP cyclohydrolase enzymes. The effects of substrate analogues and inhibitors suggest that the GTP cyclohydrolase and pyrophosphate phosphohydrolase activities occur at independent sites, although both activities depend on Mg(2+). 相似文献
20.