首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum (Al) and iron (Fe) share several physicochemical characteristics and they both bind to transferrin (Tf), entering the cell via Tf receptors (TfR). Previously, we found similar values of affinity constant for the binding of TfR to Tf carrying either Al or Fe. The competitive interaction between both metals prevented normal Fe incorporation into K562 cells and triggered the upregulation of Fe transport. In the present work we demonstrated that Al modified Fe uptake without affecting the expression of Tf receptors. Both TfR and TfR2 mRNA levels, evaluated by RT-PCR, and TfR antigenic sites, analyzed by flow cytometry, were found unchanged after Al exposure. In turn, Al did induce upregulation of non-Tf bound Fe (NTBI) uptake. This modulation was not due to intracellular Fe decrease since NTBI transport proved not to be regulated by Fe depletion. Unlike its behavior in the presence of Tf, Al was unable to compete with NTBI uptake, suggesting that both metals do not share the same alternative transport pathway. We propose that Al interference with TfR-mediated Fe incorporation might trigger the upregulation of NTBI uptake, an adaptation aimed at incorporating the essential metal required for cellular metabolism without allowing the simultaneous access of a potentially toxic metal.  相似文献   

2.
The effect of metabolic inhibitors on nontransferrin bound iron transport by K562 cells was investigated. Incubation with 1 microM rotenone, 10 microM antimycin, or 0.5 mM 2,4-dinitrophenol effectively reduced ATP levels by approximately 50%. Both the rate and extent of Fe+3 uptake were impaired in ATP-depleted cells, which display a reduced Vmax for uptake. K562 cell ferrireductase activity was also lowered by metabolic inhibitors, suggesting that the apparent energy requirements for transport reside in the reduction of Fe+3 to Fe+2. However, ATP depletion was found to inhibit the rate and extent of Fe+2 uptake as well. Thus, the transbilayer passage of Fe+2 and/or Fe+3 appears to be an energy-requiring process. These features possibly reflect properties of the transport mechanism associated with a recently identified K562 cell transport protein, called SFT for "Stimulator of Fe Transport," since exogenous expression of its activity is also affected by ATP depletion.  相似文献   

3.
Incubation of human erythroleukaemia K562 cells with Al-transferrin inhibited iron uptake from 59Fe-transferrin by about 80%. The inhibition was greater than that produced by a similar quantity of Fe-transferrin. Preincubation of cells for 6 h with either Al-transferrin or Fe-transferrin diminished the number of surface transferrin receptors by about 40% compared with cells preincubated with apo-transferrin. Al-transferrin did not compete significantly with Fe-transferrin for transferrin receptors and, when cells were preincubated for 15 min instead of 6 h, the inhibitory effect of Al-transferrin on receptor expression was lost. Both forms of transferrin also decreased the level of transferrin receptor mRNA by about 50%, suggesting a common regulatory mechanism. Aluminium citrate had no effect on iron uptake or transferrin-receptor expression. AlCl3 also had no effect on transferrin-receptor expression, but at high concentration it caused an increase in iron uptake by an unknown, possibly non-specific, mechanism. Neither Al-transferrin nor AlCl3 caused a significant change in cell proliferation. It is proposed that aluminium, when bound to transferrin, inhibits iron uptake partly by down-regulating transferrin-receptor expression and partly by interfering with intracellular release of iron from transferrin.  相似文献   

4.
Transferrin and iron uptake by human lymphoblastoid and K-562 cells   总被引:2,自引:0,他引:2  
Two human lymphoblastoid cell lines and K-562 cells were found to take up radioiodinated transferrin and transferrin-bound iron in amounts comparable to reticulocytes. These cell lines were also shown to possess transferrin receptors whose numbers and affinity for transferrin were similar to those of reticulocytes. However, unlike reticulocytes, in which at least 90% of the iron taken up is incorporated into heme, in the lymphoblastoid and K-562 cells only around 10% of the incorporated iron is found in heme. In addition, in contrast to the hemoglobin synthesizing cells, excess heme does not inhibit the removal of iron from transferrin by the lymphoblastoid and K-562 cells, suggesting that only during erythroid differentiation do cells acquire a specific mechanism for removing iron from transferrin which is subject to feedback inhibition by heme.  相似文献   

5.
Intracellular Ca(2+) regulates the cellular iron uptake in K562 cells   总被引:1,自引:0,他引:1  
Ci W  Li W  Ke Y  Qian ZM  Shen X 《Cell calcium》2003,33(4):257-266
Fluorescence quenching was used to study the kinetics of the transferrin receptor (TfR)-mediated iron uptake in the calcein-loaded K562 cells. It was found that elevation of intracellular free Ca(2+) ([Ca(2+)](i)) by thapsigargin (TG) speeds up the initial rate of iron uptake and increases the overall capacity of the cells in taking up iron. Depletion of intracellular Ca(2+) or complete chelation of extracellular Ca(2+) results in complete inhibition of the iron uptake in cells. To gain insight into molecular mechanism, IANBD-labeled transferrin (Tf) and microscopic fluorescence imaging were used to observe the endocytosis and recycling of the Tf-TfR complex in single live cells. The study showed that the preincubation of cells with TG or phorbol myristate acetate (PMA), the direct activator of protein kinase C (PKC), accelerated the endocytosis and recycling of the complex in a dose-dependent manner. W-7, the calmodulin antagonist, and GF109203X, a selected cell-permeant inhibitor of PKC, can reverse the acceleration. Analysis of actin polymerization in controlled, [Ca(2+)](i)-elevated and W-7-treated cells revealed that the actin polymerization is enhanced as [Ca(2+)](i) is raised, but reduced by W-7. The results suggest that the regulation of actin polymerization by intracellular Ca(2+) may play a central role in Ca(2+)-dependent iron uptake.  相似文献   

6.
Exosome release is regulated by a calcium-dependent mechanism in K562 cells   总被引:13,自引:0,他引:13  
Multivesicular bodies (MVBs) are endocytic structures that contain small vesicles formed by the budding of an endosomal membrane into the lumen of the compartment. Fusion of MVBs with the plasma membrane results in secretion of the small internal vesicles termed exosomes. K562 cells are a hematopoietic cell line that releases exosomes. The application of monensin (MON) generated large MVBs that were labeled with a fluorescent lipid. Exosome release was markedly enhanced by MON treatment, a Na+/H+ exchanger that induces changes in intracellular calcium (Ca2+). To explore the possibility that the effect of MON on exosome release was caused via an increase in Ca2+, we have used a calcium ionophore and a chelator of intracellular Ca2+. Our results indicate that increasing intracellular Ca2+ stimulates exosome secretion. Furthermore, MON-stimulated exosome release was completely eliminated by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), implying a requirement for Ca2+ in this process. We have observed that the large MVBs generated in the presence of MON accumulated Ca2+ as determined by labeling with Fluo3-AM, suggesting that intralumenal Ca2+ might play a critical role in the secretory process. Interestingly, our results indicate that transferrin (Tf) stimulated exosome release in a Ca2+-dependent manner, suggesting that Tf might be a physiological stimulus for exosome release in K562 cells.  相似文献   

7.
Elongation factor Ts (EF-Ts) from Thermus thermophilus forms a stable, functionally active homodimer in solution. Its monomer is composed of two domains: amino-terminal domain containing 50 amino acid residues and a larger, 146 residues long, C-domain which participates in dimerization of EF-Ts. Effect of removal of the N-domain on the conformational stability of EF-Ts has been studied. For comparison, the stabilities of both the full-length EF-Ts and its C-domain were studied by differential scanning calorimetry, electronic absorption and fluorescence spectroscopies over a pH range from 4 to approximately 13. Thermal denaturation of EF-Ts and of C-domain, followed by circular dichroism at 222 nm, at pH 7.0, and the pH dependence of the fluorescence of the single tryptophan 30 residue indicate a conformational instability of the N-domain. While N-domain does not affect the stability of full-length EF-Ts at acidic pH, its removal leads to stabilization of the rest of the protein at basic pH. This is reflected by higher values of transition temperatures and calorimetric enthalpies of C-domain as compared to the full-length EF-Ts. High mobility of the N-domain in alkaline pH conditions decreased the thermal stability of covalently linked C-domain of EF-Ts. An increase in intramolecular interactions at acidic pH together with a decrease of conformational entropies of the thermally denatured proteins most likely diminishes this destabilization effect.  相似文献   

8.
Using human erythroleukemia K562 cells, existence of receptors for hemopexin has been investigated. Hemopexin was bound to the cells in saturable, time- and temperature-dependent manner. The cells exhibited approximately 8,400 binding sites/cell for hemopexin and apohemopexin. The dissociation constants (Kd) for hemopexin and apohemopexin were 4.79 nM and 10.8 nM, respectively. Specific binding of labeled hemopexin was inhibited with increasing concentrations of unlabeled hemopexin and apohemopexin, but unaffected by transferrin and serum albumin. Heme bound to hemopexin was incorporated into the cells at 37 degrees C, but not at 4 degrees C. These results indicate that heme in hemopexin was taken up by K562 cells via the receptors for hemopexin.  相似文献   

9.
Ferritin iron kinetics and protein turnover in K562 cells   总被引:4,自引:0,他引:4  
The binding, incorporation, and release of iron by ferritin were investigated in K562 cells using both pulse-chase and long term decay studies with 59Fe-transferrin as the labeled iron source. After a 20-min pulse of labeled transferrin, 60% of the 59Fe was bound by ferritin with the proportion increasing to 70% by 4 h. This initial binding was reduced to 35% when the cells were exposed to the chelator desferrioxamine (5 mM) for an additional 30 min. By 4 h the association of 59Fe with ferritin was unaffected by the presence of the chelator, and levels of 59Fe-ferritin were identical to those in control cells (70%). Between 4-10h there was a parallel decline in 59Fe-ferritin in both control and desferrioxamine-treated cells. When incoming iron was bound by ferritin it was, therefore, initially chelatable but with time progressed to a further, nonchelatable compartment. In turnover studies where ferritin was preloaded with 59Fe by overnight incubation, 50% of the label was released from the protein by 18 h, contrasting with a t 1/2 for cellular iron release of approximately 70 h. The half-time of 59Fe release from ferritin was accelerated to 11 h by the presence of desferrioxamine. The half-time for ferritin protein turnover determined by [35S]methionine labeling was approximately 12 h in the presence or absence of the chelator. Thus, when the reassociation of iron with ferritin was prevented by the exogenous chelator there was a concordant decay of both protein and iron moieties. The direct involvement of lysosomes in this turnover was demonstrated by the use of the inhibitors leupeptin and methylamine which stabilized both 59Fe (t 1/2 = 24 h) and 35S (t 1/2 = 25.6 h) labels. We conclude that in this cell type the predominant mechanism by which iron is released from ferritin is through the constitutive degradation of the protein by lysosomes.  相似文献   

10.
This paper critically examines the redox activity of K562 cells (chronic myelogenous leukemia cells) and normal peripheral blood lymphocytes (PBL). Ferricyanide reduction, diferric transferrin reduction, and ferric ion reduction were measured spectrophotometrically by following the time-dependent changes of absorbance difference characteristic for ferricyanide disappearance and for the formation of ferrous ion:chelator complexes. Bathophenanthroline disulfonate (BPS) and ferrozine (FZ) were used to detect the appearance of ferrous ions in the reaction mixtures when diferric transferrin or ferric reduction was studied. Special attention was devoted to the analysis of time-dependent absorbance changes in the presence and absence of cells under different assay conditions. It was observed and concluded that: (i) FZ was far less sensitive and more sluggish than BPS for detecting ferrous ions at concentrations commonly used for BPS; (ii) FZ, at concentrations of at least 10-times the commonly used BPS concentrations, seemed to verify the results obtained with BPS; (iii) ferricyanide reduction, diferric transferrin reduction and ferric ion reduction by both K562 cells and peripheral blood lymphocytes did not differ significantly; and (iv) earlier values published for the redox activities of different cells might be overestimated, partly because of the observation published in 1988 that diferric transferrin might have loosely bound extra iron which is easily reduced. It is suggested that the specific diferric transferrin reduction by cells might be considered as a consequence of (i) changing the steady-state equilibrium in the diferric transferrin-containing solution by addition of ferrous ion chelators which effectively raised the redox potential of the iron bound in holotransferrin, and (ii) changing the steady-state equilibrium by addition of cells which would introduce, via their large and mostly negatively charged plasma membrane surface, a new phase which would favor release and reduction of the iron in diferric transferrin by a ferric ion oxidoreductase. The reduction of ferricyanide is also much slower than activities reported for other cells which may indicate reduced plasma membrane redox activity in these cells.  相似文献   

11.
The effect of lead on cellular iron metabolism has been investigated using human erythroleukemia (K562) cells. When the cells were cultured with 100 m Pb2+ for 48 h, the rate of cellular iron uptake from transferrin decreased to 46% of that in untreated cells. Scatchard analysis of the binding data revealed that this reduction was the result of a decrease in the number of transferrin receptors rather than an alteration in ligand-receptor affinity. The results of immunoprecipitation of transferrin receptors on the cell surface also confirmed the decreased expression of transferrin receptors by lead-treated cells. The down-regulation of transferrin receptors by treatment with lead did not result from a decrease in the total amount of the receptor, as determined by immunoblotting. Moreover, the biosynthesis of the receptor was unaffected by lead treatment. Thus, the down-regulation of surface transferrin receptors in lead-treated cells might be due to a redistribution of receptors rather than an actual loss of receptors from the cell. Using kinetic analysis, it was shown that redistribution of the receptor did not result from the alteration in the rates of transferrin receptor recycling. A comparison of the amounts of transferrin receptor on the cell surface and in the cycling pool revealed that the sequestration of the receptor from normal flow through the cycle might cause down-regulation of the surface receptor.  相似文献   

12.
There is an increasing interest in the use of lanthanides in medicine. However, the mechanism of their accumulation in cells is not well understood. Lanthanide cations are similar to ferric ions with regard to transferrin binding, suggesting transferrin-receptor mediated transport is possible; however, this has not yet been confirmed. In order to clarify this mechanism, we investigated the binding of Yb3+ to apotransferrin by UV-Vis spectroscopy and stopped-flow spectrophotometry, and found that Yb3+ binds to apotransferrin at the specific iron sites in the presence of bicarbonate. The apparent binding constants of these sites showed that the affinity of Yb3+ is lower than that of Fe3+and binding of Yb3+ in the N-lobe is kinetically favored while the C-lobe is thermodynamically favored. The first Yb3+ bound to the C-lobe quantitatively with a Yb/apotransferrin molar ratio of < 1, whereas the binding to the other site is weaker and approaches completeness by a higher molar ratio only. As demonstrated by 1H NMR spectra, Yb3+ binding disturbed the conformation of apotransferrin in a manner similar to Fe3+. Flow cytometric studies on the uptake of fluorescein isothiocyanate labeled Yb3+-bound transferrin species by K562 cells showed that they bind to the cell receptors. Laser scanning confocal microscopic studies with fluorescein isothiocyanate labeled Yb3+-bound transferrin and propidium iodide labeled DNA and RNA in cells indicated that the Yb3+ entered the cells. The Yb3+-transferrin complex inhibited the uptake of the fluorescein labeled ferric-saturated transferrin (Fe2-transferrin) complex into K562 cells. The results demonstrate that the complex of Yb3+-transferrin complex was recognized by the transferrin receptor and that the transferrin-receptor-mediated mechanism is a possible pathway for Yb3+ accumulation in cells.  相似文献   

13.
Following a pulse with 59Fe-transferrin, K562 erythroleukemia cells incorporate a significant amount of 59Fe into ferritin. Conditions or manipulations which alter the supply of iron to cells result in changes in the rate of ferritin biosynthesis with consequent variations in the size of the ferritin pool. Overnight exposure to iron donors such as diferric transferrin or hemin increases the ferritin level 2-4- or 6-8-fold above that of the control, respectively. Treatment with the anti-human transferrin receptor antibody, OKT9 (which reduces the iron uptake by decreasing the number of transferrin receptors) lowers the ferritin level by approximately 70-80% with respect to the control. The fraction of total cell-associated 59Fe (given as a pulse via transferrin) that becomes ferritin bound is proportional to the actual ferritin level and is independent of the instantaneous amount of iron taken up. This has allowed us to establish a curve that correlates different levels of intracellular ferritin with corresponding percentages of incoming iron delivered to ferritin. Iron released from transferrin appears to distribute to ferritin according to a partition function; the entering load going into ferritin is set for a given ferritin level over a wide range of actual amounts of iron delivered.  相似文献   

14.
Interference of aluminium on iron metabolism in erythroleukaemia K562 cells   总被引:1,自引:0,他引:1  
It has been suggested that aluminium (Al) has a deleterious effect on erythropoiesis. However, there is still uncertainty as to its action mechanism. The present work was designed to determine how Al could affect the iron (Fe) metabolism in the human erythroleukaemia cell line K562. These cells, that express surface transferrin receptors (TfRs), were induced to erythroid differentiation by either haemin or hydroxyurea in 72 h cultures in media containing apotransferrin (apoTf). In the presence of aluminium citrate, the number of benzidine-positive cells decreased 18% when the cultures were induced by haemin, and 30% when hydroxyurea was the inducer. Cell viability was always unaffected. From competition assays, surface binding of 125I-Tf-Fe2 was found to be inversely related (p < 0.05) to Tf-Al2 concentration (from 2.5 to 10 nM). The dissociation constants (Kd) of the binding reaction between TfRs and the ligands Tf-Fe2 and Tf-Al2 were calculated. Kd values of the same order of magnitude demonstrated that TfR has a similar affinity for Tf-Fe2 (Kd = 1.75 x 10(-9) M) and Tf-Al2 (Kd = 1.37 x 10(-9) M). The number of surface TfRs, measured by kinetic 125I-Tf-Fe2 binding assays, was higher in induced cells cultured in the presence of Al. Nevertheless, in spite of the inhibition of cell haemoglobinization observed, 59Fe incorporation values were not different from those measured in control cultures for 72 h. As a consequence, it can be suggested that cellular Fe utilisation, and not Fe uptake, might be the main metabolic pathway impaired by Al.  相似文献   

15.
Fluorescence-emission spectra from anthracycline-treated cells suspended in buffer have been used to measure the uptake of three anthracycline derivatives: adriamycin, 4'-O-tetrahydropyranyladriamycin and aclacinomycin in drug-sensitive and drug-resistant K562 cells. The initial rate of uptake and the kinetics of active efflux under the effect of an integral membrane glycoprotein, P-glycoprotein, have been measured as a function of temperature. The activation energies for the passage of the drugs through the plasma membrane have been calculated. In the case of 4'-O-tetrahydropyranyladriamycin, the activation energies for the passive diffusion of the drug equal 45 kJ.mol-1 and 37 kJ.mol-1 for sensitive and resistant cells, respectively. The activation energy for the active efflux of 4'-O-tetrahydropyranyladriamycin equal 25 kJ.mol-1.  相似文献   

16.
A reconstituted spinach chloroplast system containing thylakoids, stroma and 0.1 mM NADPH supported O2 evolution in the presence of oxidised glutathione (GSSG). The properties of the reaction were consistent with light-coupled GSSG-reductase activity involving H2O as eventual electron donor. The reconstituted system also supported dehydroascorbate-dependent O2 evolution in the presence of 0.6 mM reduced glutathione (GSH) and 0.1 mM NADPH with the concomitant production of ascorbate. The GSSG could replace GSH in which case the production of GSH preceded the accumulation of ascorbate. The data are consistent with the light-dependent reduction of dehydroascorbate using H2O as eventual electron donor via the sequence H2O→NADP→GSSG→dehydroascorbate. Approximately 30% of the GSH-dehydrogenase activity of spinach leaf protoplasts is localised in chloroplasts: this could not be attributed to contamination of chloroplasts by activity from the extrachloroplast compartment. Washed intact chloroplasts supported the uptake of ascorbate but the uptake mechanism had a very low affinity for ascorbate (Km approximately 20 mM). The rate of uptake of ascorbate was less than the rate of light-dependent reduction of dehydroascorbate and too slow to account for the rate of H2O2 reduction by washed intact chloroplasts.  相似文献   

17.
18.
A 3H label was introduced at the C-1 position of the mannosidase I inhibitor 1-deoxymannojirimycin (dMM) by catalytic hydrogenolysis of benzyl-2,3-O-isopropylidene-5-N-benzyl-6-O-benzyl-alpha-D-mannofurano side with 3H2. 1-[3H]dMM as well as its precursor 1-[3H]2,3-O-isopropylidene-dMM had identical Rf as the nonradioactive compounds on TLC. Furthermore, alpha 1-antitrypsin secreted by HepG2 cells was modified indistinguishably by treatment of the cells with dMM and 1-[3H]dMM. Thus, 1-[3H]dMM had chemical and biological properties identical with authentic dMM. Uptake of [14C]mannose by K562 cells could be inhibited by glucose but not by the mannose analogue dMM. Thus, dMM does not enter the cell through hexose transporter(s). Uptake of 1-[3H]dMM by K562 cells could not be inhibited by increasing concentrations of nonradioactive dMM (from 1-32,000 microM), showing transport of dMM into cells through nonfacilitated diffusion. Furthermore, uptake of 1-[3H]dMM by K562 cells was observed at 0 degrees C.  相似文献   

19.
The mechanism of iron uptake from several iron-containing compounds by transferrin-depleted rabbit reticulocytes and mouse spleen erythroid cells was investigated. Iron complexes of DL-penicillamine, citrate and six different aroyl hydrazones may be utilized by immature erythroid cells for hemoglobin synthesis, although less efficiently than iron from transferrin. HTF-14, a monoclonal antibody against human transferrin, reacts with rabbit transferrin and inhibits iron uptake and heme synthesis by rabbit reticulocytes. HTF-14 had no significant effect on iron uptake and heme synthesis when non-transferrin donors of iron were examined. Ammonium chloride (NH4Cl) increases intracellular pH and blocks the release or utilization of iron from the internalized transferrin. NH4Cl only slightly affected iron incorporation and heme synthesis from non-transferrin donors of iron. Hemin inhibited transferrin iron uptake and heme synthesis, but had a much lesser effect on iron incorporation and heme synthesis from non-transferrin donors of iron. These results allow us to conclude that transferrin-depleted reticulocytes take up iron from all of the examined non-transferrin iron donors without the involvement of the transferrin/transferrin receptor pathway.  相似文献   

20.
Effect of iron chelators on the transferrin receptor in K562 cells   总被引:16,自引:0,他引:16  
Delivery of iron to K562 cells by diferric transferrin involves a cycle of binding to surface receptors, internalization into an acidic compartment, transfer of iron to ferritin, and release of apotransferrin from the cell. To evaluate potential feedback effects of iron on this system, we exposed cells to iron chelators and monitored the activity of the transferrin receptor. In the present study, we found that chelation of extracellular iron by the hydrophilic chelators desferrioxamine B, diethylenetriaminepentaacetic acid, or apolactoferrin enhanced the release from the cells of previously internalized 125I-transferrin. Presaturation of these compounds with iron blocked this effect. These chelators did not affect the uptake of iron from transferrin. In contrast, the hydrophobic chelator 2,2-bipyridine, which partitions into cell membranes, completely blocked iron uptake by chelating the iron during its transfer across the membrane. The 2,2-bipyridine did not, however, enhance the release of 125I-transferrin from the cells, indicating that extracellular iron chelation is the key to this effect. Desferrioxamine, unlike the other hydrophilic chelators, can enter the cell and chelate an intracellular pool of iron. This produced a parallel increase in surface and intracellular transferrin receptors, reaching 2-fold at 24 h and 3-fold at 48 h. This increase in receptor number required ongoing protein synthesis and could be blocked by cycloheximide. Diethylenetriaminepentaacetic acid or desferrioxamine presaturated with iron did not induce new transferrin receptors. The new receptors were functionally active and produced an increase in 59Fe uptake from 59Fe-transferrin. We conclude that the transferrin receptor in the K562 cell is regulated in part by chelatable iron: chelation of extracellular iron enhances the release of apotransferrin from the cell, while chelation of an intracellular iron pool results in the biosynthesis of new receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号