首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A spontaneous Xanthomonas campestris pv. phaseoli H(2)O(2)-resistant mutant emerged upon selection with 1 mM H(2)O(2). In this report, we show that growth of this mutant under noninducing conditions gave high levels of catalase, alkyl hydroperoxide reductase (AhpC and AhpF), and OxyR. The H(2)O(2) resistance phenotype was abolished in oxyR-minus derivatives of the mutant, suggesting that elevated levels and mutations in oxyR were responsible for the phenotype. Nucleotide sequence analysis of the oxyR mutant showed three nucleotide changes. These changes resulted in one silent mutation and two amino acid changes, one at a highly conserved location (G197 to D197) and the other at a nonconserved location (L301 to R301) in OxyR. Furthermore, these mutations in oxyR affected expression of genes in the oxyR regulon. Expression of an oxyR-regulated gene, ahpC, was used to monitor the redox state of OxyR. In the parental strain, a high level of wild-type OxyR repressed ahpC expression. By contrast, expression of oxyR5 from the X. campestris pv. phaseoli H(2)O(2)-resistant mutant and its derivative oxyR5G197D with a single-amino-acid change on expression vectors activated ahpC expression in the absence of inducer. The other single-amino-acid mutant derivative of oxyR5L301R had effects on ahpC expression similar to those of the wild-type oxyR. However, when the two single mutations were combined, as in oxyR5, these mutations had an additive effect on activation of ahpC expression.  相似文献   

2.
3.
4.
The sensitivity of Bacillus subtilis to hydrogen peroxide (oxidative stress) was found to vary with the position of the culture in the growth cycle. The most dramatic change occurred at the stationary phase, when the cells became totally resistant to 10 mM H2O2, in contrast to the loss of 3 to 4 log units of viability when treated at the early log phase. Two of the eight proteins induced by a protective concentration of H2O2 (50 muM) were also induced (in the absence of oxidative stress) on entry into the late log phase of growth. The response of five isogenic spo0 mutants (spo0B, spo0E, spo0F, spo0H, and spo0J) to oxidative stress was identical to that of the wild-type parental strain. In an isogenic spo0A strain, mid-log-phase cells were 100-fold less sensitive to 10 mM H2O2 than was the wild type. Pretreatment with 50 microM H2O2 induced little further protection, suggesting that the response is constitutive in this strain. By comparison of proteins induced by 50 microM H2O2 in the wild-type, spo0A, spo0H, and spo0J strains, four proteins were identified that may be essential for protection against lethal concentrations of H2O2. The presence of multiple copies of the spo0H gene in a spo0A background converted the stress phenotype of the spo0A mutant to that of the wild type but left the sporulation phenotype unaltered.  相似文献   

5.
【目的】肠出血性大肠杆菌O157:H7是世界范围内重要的动物源性致病菌之一,可感染人。I型菌毛是多种致病性大肠杆菌(如肾盂肾炎型大肠杆菌等)可表达的一种黏附结构,与细菌吸附黏膜表面密切相关。然而,O157:H7 fim操纵子上几个核苷酸的缺失却导致其不能表达I型菌毛。BLAST比对结果表明O157:H7独有的开放阅读框z3276编码的氨基酸序列与其他大肠杆菌I型菌毛高度同源,这可能是对O157:H7不能表达I型菌毛的补偿机制,但确切功能尚不清楚。本文探究z3276基因的生物学功能。【方法】利用O157:H7 86-24参考菌株构建z3276基因缺失株(?z3276),并构建其互补株(C?z3276),进而比较亲本株、?z3276与C?z3276的生物学特性及对小鼠致病性差异。【结果】与亲本株相比,?z3276进入对数生长期的时间延后,在半固体琼脂平板上的迁移直径明显缩小,生物被膜形成能力显著减弱。?z3276对HEp-2细胞的黏附和侵袭能力并无明显变化,但对IPEC-J2细胞的侵袭能力明显减弱。在小鼠攻毒试验中,?z3276组排菌数量减少、排菌持续时间缩短。C?z3276各项特性均能回复到与亲本株一致的水平。【结论】z3276基因可能是O157:H7重要的毒力相关因子。  相似文献   

6.
Consumption of fresh and fresh-cut fruits and vegetables contaminated with Escherichia coli O157:H7 has resulted in hundreds of cases of illness and, in some instances, death. In this study, the influence of cell surface structures of E. coli O157:H7, such as flagella, curli fimbriae, lipopolysaccharides, or exopolysaccharides, on plant defense responses and on survival or colonization on the plant was investigated. The population of the E. coli O157:H7 ATCC 43895 wild-type strain was significantly lower on wild-type Arabidopsis plants than that of the 43895 flagellum-deficient mutant. The population of the E. coli O157:H7 43895 flagellum mutant was greater on both wild-type and npr1-1 mutant (nonexpressor of pathogenesis-related [PR] genes) plants and resulted in less PR gene induction, estimated based on a weak β-glucuronidase (GUS) signal, than did the 43895 wild-type strain. These results suggest that the flagella, among the other pathogen-associated molecular patterns (PAMPs), made a substantial contribution to the induction of plant defense response and contributed to the decreased numbers of the E. coli O157:H7 ATCC 43895 wild-type strain on the wild-type Arabidopsis plant. A curli-deficient E. coli O157:H7 86-24 strain survived better on wild-type Arabidopsis plants than the curli-producing wild-type 86-24 strain did. The curli-deficient E. coli O157:H7 86-24 strain exhibited a GUS signal at a level substantially lower than that of the curli-producing wild-type strain. Curli were recognized by plant defense systems, consequently affecting bacterial survival. The cell surface structures of E. coli O157:H7 have a significant impact on the induction of differential plant defense responses, thereby impacting persistence or survival of the pathogen on plants.  相似文献   

7.
8.
Francisella tularensis is an intracellular bacterial pathogen, and is a category A bioterrorism agent. Within quiescent human macrophages, the F. tularensis pathogenicity island (FPI) is essential for bacterial growth within quiescent macrophages. The F. tularensis-containing phagosome matures to a late endosome-like stage that does not fuse to lysosomes for 1-8 h, followed by gradual bacterial escape into the macrophage cytosol. Here we show that the FPI protein IglD is essential for intracellular replication in primary human monocyte-derived macrophages (hMDMs). While the parental strain replicates robustly in pulmonary, hepatic and splenic tissues of BALB/c mice associated with severe immunopathologies, the isogenic iglD mutant is severely defective. Within hMDMs, the iglD mutant-containing phagosomes mature to either a late endosome-like phagosome, similar to the parental strain, or to a phagolysosome, similar to phagosomes harbouring the iglC mutant control. Despite heterogeneity and alterations in phagosome biogenesis, the iglD mutant bacteria escape into the cytosol faster than the parental strain within hMDMs and pulmonary cells of BALB/c mice. Co-infections of hMDMs with the wild-type strain and the iglD mutant, or super-infection of iglD mutant-infected hMDMs with the wild-type strain show that the mutant strain replicates robustly within the cytosol of hMDMs coinhabited by the wild strain. However, when the wild-type strain-infected hMDMs are super-infected by the iglD mutant, the mutant fails to replicate in the cytosol of communal macrophages. This is the first demonstration of a F. tularensis novel protein essential for proliferation in the macrophage cytosol. Our data indicate that F. tularensis transduces signals to the macrophage cytosol to remodel it into a proliferative niche, and IglD is essential for transduction of these signals.  相似文献   

9.
This study focuses on the mechanisms for hydrogen peroxide detoxification in Synechococcus sp. strain PCC 7942. To gain better understanding of the role of different routes of hydrogen peroxide detoxification, we inactivated TplA (thioredoxin-peroxidase-like), which we recently identified. In addition, we inactivated the gene encoding catalase-peroxidase and examined the ability to detoxify H(2)O(2) and to survive oxidative stress in both of the single mutants and in the double mutant. Surprisingly, we observed that the double mutant survived H(2)O(2) concentrations that the single catalase-peroxidase mutant could not tolerate. This phenotype correlated with an increased ability of the double mutant to detoxify externally added H(2)O(2) compared to the catalase-peroxidase mutant. Therefore, our studies suggested the existence of a hydrogen peroxide detoxification activity in addition to catalase-peroxidase and thioredoxin-peroxidase. The rate of detoxification of externally added H(2)O(2) was similar in the wild-type and the TplA mutant cells, suggesting that, under these conditions, catalase-peroxidase activity was essential for this process and TplA was dispensable. However, during excessive radiation, conditions under which the cell might experience oxidative stress, TplA appears to be essential for growth, and cells lacking it cannot compete with the wild-type strain. Overall, these studies suggested different physiological roles for various cellular hydrogen peroxide detoxification mechanisms in Synechococcus sp. strain PCC 7942.  相似文献   

10.
The structural gene for 1-aminocyclopropane-1-carboxylate (ACC) deaminase ( acdS ) from the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN was isolated and used to construct a mutant strain B. phytofirmans YS2 ( B. phytofirmans PsJN/Δ acdS ), in which an internal segment of the acdS gene was deleted. The mutant YS2 lost ACC deaminase activity as well as the ability to promote the elongation of the roots of canola seedlings. Concomitant with the creation of this deletion mutant, a number of physiological changes were observed in the bacterium, including an increase in indole acetic acid synthesis, a decrease in the production of siderophores and an increase in the cellular level of the stationary-phase σ factor, RpoS. Introduction of the wild-type acdS gene into the mutant YS2 to construct strain B. phytofirmans YS3 ( B. phytofirmans YS2/pRK-AcdS) restored both ACC deaminase activity and plant growth-promotion activity in strain YS3. However, the complemented mutant still showed the above-mentioned physiological changes.  相似文献   

11.
Adherence of Clostridium thermocellum to cellulose   总被引:22,自引:7,他引:15       下载免费PDF全文
The adherence of Clostridium thermocellum, a cellulolytic, thermophilic anaerobe, to its insoluble substrate (cellulose) was studied. The adherence phenomenon was determined to be selective for cellulose. The observed adherence was not significantly affected by various parameters, including salts, pH, temperature, detergents, or soluble sugars. A spontaneous adherence-defective mutant strain (AD2) was isolated from the wild-type strain YS. Antibodies were prepared against the bacterial cell surface and rendered specific to the cellulose-binding factor (CBF) by adsorption to mutant AD2 cells. By using these CBF-specific antibodies, crossed immunoelectrophoresis of cell extracts revealed a single discrete precipitation peak in the parent strain which was absent in the mutant. This difference was accompanied by an alteration in the polypeptide profile whereby sonicates of strain YS contained a 210,000-molecular-weight band which was missing in strain AD2. The CBF antigen could be removed from cell extracts by adsorption to cellulose. A combined gel-overlay--immunoelectrophoretic technique demonstrated that the cellulose-binding properties of the CBF were accompanied by carboxymethylcellulase activity. During the exponential phase of growth, a large part of the CBF antigen and related carboxymethylcellulase activity was associated with the cells of wild-type strain YS. However, the amounts decreased in stationary-phase cells. Cellobiose-grown mutant AD2 cells lacked the cell-associated CBF, but the latter was detected in the extracellular fluid. Increased levels of CBF were observed when cells were grown on cellulose. In addition, mutant AD2 regained cell-associated CBF together with the property of cellulose adherence. The presence of the CBF antigen and related adherence characteristics appeared to be a phenomenon common to other naturally occurring strains of this species.  相似文献   

12.
The homolog of the chromosomally encoded stationary-phase sigma factor RpoS in Borrelia burgdorferi was inactivated using gyrB(r) as a selectable marker. Two-dimensional nonequilibrium pH gradient electrophoresis of stationary-phase cell lysates identified at least 11 differences between the protein profiles of the rpoS mutant and wild-type organisms. Wild-type B. burgdorferi had a growth phase-dependent resistance to 1 N NaCl, similar to the stationary-phase response reported for other bacteria. The B. burgdorferi rpoS mutant strain was less resistant to osmotic stress in stationary phase than the isogenic rpoS wild-type organism. The results indicate that the B. burgdorferi rpoS homolog influences protein composition and participates in stationary-phase-dependent osmotic resistance. This rpoS mutant will be useful for studying regulation of gene expression in response to changing environmental conditions.  相似文献   

13.
14.
Aspergillus fumigatus is an important pathogen of immunocompromised hosts, causing pneumonia and invasive disseminated disease and resulting in high mortality. In order to determine the importance of the cAMP signaling pathway for virulence, three genes encoding putative elements of the pathway have been cloned and characterized: the adenylate cyclase gene acyA, and gpaA and gpaB, both of which encode alpha subunits of heterotrimeric G proteins. The acyA and gpaB genes were each deleted in A. fumigatus. Both mutants showed reduced conidiation, with the deltaacyA mutant producing very few conidia. The growth rate of the deltaacyA mutant was also reduced, in contrast to that of the deltagpaB mutant. Addition of 10 mM dibutyryl-cAMP to the culture medium completely restored the wild-type phenotype in both mutant strains. To study the influence of GPAB on the expression of the gene pksP, which encodes a virulence factor that is involved in pathogenicity, a pksPp-lacZ gene fusion was generated and integrated as a single copy at the pyrG gene locus of both the parental strain and the deltagpaB mutant strain. The deltagpaB mutant showed reduced expression of the pksPp-lacZ reporter gene relative to that in the parental strain. In mycelia of both the parental strain and the deltagpaB mutant pksPp-lacZ expression was increased when isobutyl-methyl-xanthine, an inhibitor of intracellular phosphodiesterases, was added to the medium. The survival rate of conidia after ingestion by human monocyte-derived macrophages was also determined. The killing rate for conidia from deltaacyA and deltagpaB strains was significantly higher than that for wild-type conidia. Taken together, these findings suggest that cAMP triggers a system that protects A. fumigatus from the effects of immune effector cells of the host.  相似文献   

15.
C Putnam-Evans  T M Bricker 《Biochemistry》1992,31(46):11482-11488
The psbB gene encodes the intrinsic chlorophyll-a binding protein CPa-1 (CP-47), a component of photosystem II in higher plants, algae, and cyanobacteria. Oligonucleotide-directed mutagenesis was used to introduce mutations into a segment of the psbB gene encoding the large extrinsic loop region of CPa-1 in the cyanobacterium Synechocystis sp. PCC 6803. Altered psbB genes were introduced into a mutant recipient strain (DEL-1) of Synechocystis in which the genomic psbB gene had been partially deleted. Initial target sites for mutagenesis were absolutely conserved basic residue pairs occurring within the large extrinsic loop. One mutation, RR384385GG, produced a strain with impaired photosystem II activity. This strain exhibited growth characteristics comparable to controls. However, at saturating light intensities this mutant strain evolved oxygen at only 50% of the rate of the control strains. Quantum yield measurements at low light intensities indicated that the mutant had 30% fewer fully functional photosystem II centers than do control strains of Synechocystis. Immunological analysis of a number of photosystem II protein components indicated that the mutant accumulates normal quantities of photosystem II proteins and that the ratio of photosystem II to photosystem I proteins is comparable to that found in control strains. Upon exposure to high light intensities the mutant cells exhibited a markedly increased susceptibility to photoinactivation. However, Tris-treated thylakoid membranes from both the mutant and wild-type exhibited comparable rates of photoinactivation. Thylakoid membranes isolated from RR384385GG exhibited only 15% of the H2O to 2,6-dichlorophenolindophenol electron transport rate observed in wild-type strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Qian J  Qin X  Yin Q  Chu J  Wang Y 《Biotechnology letters》2011,33(3):571-575
The mitogen-activated protein kinase Hog1 gene (Kmhog1) was isolated from Kluyveromyces marxianus strain NBRC 1777 by degenerate PCR and genome walking, and then disrupted to construct a mutant strain hog1?. The mutant was now more sensitive to acetic acid and its growth was nearly completely inhibited by 0.5 M NaCl (97%) and 10 mM H(2)O(2) (93%) as compared with the wild-type cells. However, neither strain grew at 47°C. Kmhog1 may thus be required for adaptation to acetic acid, osmotic, and oxidative stress but is not involved in thermotolerance.  相似文献   

17.
Exonuclease III, encoded by the xthA gene, plays a central role in the base excision pathway of DNA repair in bacteria. Studies with Escherichia coli xthA mutants have also shown that exonuclease III participates in the repair of oxidative damage to DNA. An isogenic xthA-1 mutant (designated CAM220) derived from virulent Brucella abortus 2308 exhibited increased sensitivity to the alkylating agent methyl methanesulfonate (MMS) compared to the parent strain. In contrast, 2308 and the isogenic xthA-1 mutant displayed similar levels of resistance to the DNA cross-linker mitomycin C. These phenotypic properties are those that would be predicted for a strain defective in base excision repair. The B. abortus xthA-1 mutant also displayed reduced resistance to killing by H2O2 and the ONOO(-)-generating compound 3-morpholinosydnonimine (SIN-1) compared to strain 2308, indicating that the xthA-1 gene product participates in protecting B. abortus 2308 from oxidative damage. Introducing a plasmid-borne copy of the parental xthA-1 gene into CAM220 restored wild-type resistance of this mutant to MMS, H2O2, and SIN-1. Although the B. abortus xthA-1 mutant exhibited increased sensitivity to oxidative killing compared to the parental strain in laboratory assays, CAM220 and 2308 displayed equivalent spleen colonization profiles in C57BL/6 [corrected] mice through 8 weeks postinfection and equivalent intracellular survival and replication profiles in cultured murine macrophages. Thus, although the xthA-1 gene product participates in base excision repair and resistance to oxidative killing in B. abortus 2308, XthA-1 is not required for wild-type virulence of this strain in the mouse model.  相似文献   

18.
An Agrobacterium tumefaciens membrane-bound ferritin (mbfA) mutant was generated to assess the physiological functions of mbfA in response to iron and hydrogen peroxide (H(2) O(2) ) stresses. Wild-type and the mbfA mutant strains showed similar growth under high- and low-iron conditions. The mbfA mutant was more sensitive to H(2) O(2) than wild-type strain. Expression of a functional mbfA gene could complement the H(2) O(2) -hypersensitive phenotype of the mbfA mutant and a rhizobial iron regulator (rirA) mutant, suggesting that MbfA protects cells from H(2) O(2) toxicity by sequestering intracellular free iron, thus preventing the Fenton reaction. The expression of mbfA could be induced in response to iron and to H(2) O(2) treatment. The iron response regulator (irr) also acted as a repressor of mbfA expression. An irr mutant had high constitutive expression of mbfA, which partly contributed to the H(2) O(2) -hyperresistant phenotype of the irr mutant. The data reported here demonstrate an important role of A.?tumefaciens MbfA in the cellular defence against iron and H(2) O(2) stresses.  相似文献   

19.
To investigate regulatory networks in Legionella pneumophila, the gene encoding the homolog of the Escherichia coli stress and stationary-phase sigma factor RpoS was identified by complementation of an E. coli rpoS mutation. An open reading frame that is approximately 60% identical to the E. coli rpoS gene was identified. Western blot analysis showed that the level of L. pneumophila RpoS increased in stationary phase. An insertion mutation was constructed in the rpoS gene on the chromosome of L. pneumophila, and the ability of this mutant strain to survive various stress conditions was assayed and compared with results for the wild-type strain. Both the mutant and wild-type strains were more resistant to stress when in stationary phase than when in the logarithmic phase of growth. This finding indicates that L. pneumophila RpoS is not required for a stationary-phase-dependent resistance to stress. Although the mutant strain was able to kill HL-60- and THP-1-derived macrophages, it could not replicate within a protozoan host, Acanthamoeba castellanii. These data suggest that L. pneumophila possesses a growth phase-dependent resistance to stress that is independent of RpoS control and that RpoS likely regulates genes that enable it to survive in the environment within protozoa. Our data indicate that the role of rpoS in L. pneumophila is very different from what has previously been reported for E. coli rpoS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号