首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genome-wide scan for quantitative trait loci (QTLs) controlling body weight at 10 weeks after birth was carried out in a population of 387 intersubspecific backcross mice derived from a cross between C57BL/6J inbred mice (Mus musculus domesticus) and wild mice (M. m. castaneus) captured in the Philippines, in order to discover novel QTLs from the wild mice that have about 60% lower body weight than C57BL/6J. By interval mapping, we detected four QTLs: a highly significant QTL on Chromosome (Chr) 2, which was common in both sexes; two significant QTLs on Chr 13, one male-specific and the other female-specific; and a suggestive male-specific QTL on X Chr. By composite interval mapping, we confirmed the presence of the three QTLs on Chrs 2 and 13, but not of the male-specific X-linked QTL. The composite interval mapping analysis newly identified three QTLs: a significant male-specific QTL on Chr 11 and two highly significant female-specific QTLs on Chrs 9 and X. Individual QTLs explained 3.8–11.6% of the phenotypic variance, and all the QTL alleles derived from the wild mice decreased body weight. A two-way analysis of variance revealed a significant epistatic interaction between the Chr 2 QTL and the background marker locus D12Mit4 on Chr 12 only in males. The interaction effect unexpectedly increased body weight. The chromosomal region containing the Chr 2 QTL did not coincide with those of growth or fatness QTLs mapped in previous studies. These results suggest that a population of wild mice may play an important role as new sources of valuable QTLs. Received: 14 January 2000 / Accepted: 14 April 2000  相似文献   

2.
Quantitative trait locus (QTL) analysis of serum insulin, triglyceride, total cholesterol and phospholipid levels at 10 weeks of age was performed in 321 F2 offspring from SM/J and A/J mice. Interval mapping revealed a total of 22 suggestive QTLs affecting the four traits: two insulin QTLs on Chromosomes (Chrs) 6 and 8; six triglyceride QTLs on Chrs 4, 8, 9, 11, 12 and 19; six total-cholesterol QTLs on Chrs 1, 3, 4, 14, 17 and 19; and eight phospholipid QTLs on Chrs 2, 3, 4, 6, 8, 10 and 19. Gender influenced the expression of eight of the suggestive QTLs. The total-cholesterol QTLs on Chrs 4, 14 and 17, the triglyceride QTL on Chr 9 and the phospholipid QTL on Chr 4 were specific to females. The phospholipid QTLs on Chrs 2 and 6 and the insulin QTL on Chr 8 were specific to males. In addition, common QTLs involved in the regulation of some of the traits were identified. The female-specific QTL on Chr 4 appeared to be involved in the regulation of total cholesterol and phospholipid levels. The QTL on Chr 8 affected insulin and phospholipid levels, whereas the Chr 19 QTL was common to the three lipid parameters.  相似文献   

3.
Recent advances in mouse genomics have revealed considerable variation in the form of single-nucleotide polymorphisms (SNPs) among common inbred strains. This has made it possible to characterize closely related strains and to identify genes that differ; such genes may be causal for quantitative phenotypes. The mouse strains DBA/1J and DBA/2J differ by just 5.6% at the SNP level. These strains exhibit differences in a number of metabolic and lipid phenotypes, such as plasma levels of triglycerides (TGs) and HDL. A cross between these strains revealed multiple quantitative trait loci (QTLs) in 294 progeny. We identified significant TG QTLs on chromosomes (Chrs) 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 16, and 19, and significant HDL QTLs on Chrs 3, 9, and 16. Some QTLs mapped to chromosomes with limited variability between the two strains, thus facilitating the identification of candidate genes. We suggest that Tshr is the QTL gene for Chr 12 TG and HDL levels and that Ihh may account for the TG QTL on Chr 1. This cross highlights the advantage of crossing closely related strains for subsequent identification of QTL genes.  相似文献   

4.
Adrenal gland function is mediated through secreted hormones, which play a vital role in the autonomic and hypothalamic-pituitary-adrenal (HPA)-axis-mediated stress response. The genetic underpinnings of the stress response can be approached using a quantitative trait locus (QTL) analysis. This method has been used to investigate genomic regions associated with variation in complex phenotypes, but it has not been used to explore the structure of the adrenal. We used QTL analyses to identify candidate genes underlying adrenal weight and adrenal cortical zone and medulla widths. We used 64 BXD recombinant inbred (RI) strains of mice (n?=?528) and 2 parental strains (C57BL/6J and DBA/2J; n?=?20) to measure adrenal weights and adrenal zone widths. For adrenal weight, we found significant QTLs on chromosome 3 for females (Fawq1) and Chr 4 for males (Mawq1) and suggestive QTLs on Chrs 1, 3, 10, and 14 for females and Chrs 2, 4, 10, 17, and X for males. We identified a significant QTL on Chr 10 (Mawdq1) and a suggestive QTL on Chr 13 for male adrenal total width. For male adrenal medulla width, we found a significant QTL on Chr 5 (Mmwdq1) and a suggestive QTL on Chr 1. We also identified significant QTLs on Chrs 10 (Mxwdq1) and 14 (Mxwdq2) for male X-zone width. There are 113 genes that mapped within the significant QTL intervals, and we identified 4 candidate genes associated with adrenal structure and/or function. In summary, this study is an important first step for detecting genetic factors influencing the structure of the adrenal component of the HPA axis using QTL analyses, which may relate to adrenal function and provide further insights into elucidating genes critical for stress-related phenotypes.  相似文献   

5.
In a previous study in 15 inbred mouse strains, we found highest and lowest systolic blood pressures in NZO/HILtJ mice (metabolic syndrome) and C3H/HeJ mice (common lean strain), respectively. To identify the loci involved in hypertension in metabolic syndrome, we performed quantitative trait locus (QTL) analysis for blood pressure with direction of cross as a covariate in segregating F2 males derived from NZO/HILtJ and C3H/HeJ mice. We detected three suggestive main-effect QTLs affecting systolic and diastolic blood pressures (SBP and DBP). We analyzed the first principle component (PC1) generated from SBP and DBP to investigate blood pressure. In addition to all the suggestive QTLs (Chrs 1, 3, and 8) in SBP and DBP, one suggestive QTL on Chr 4 was found in PC1 in the main scan. Simultaneous search identified two significant epistatic locus pairs (Chrs 1 and 4, Chrs 4 and 8) for PC1. Multiple regression analysis revealed three blood pressure QTLs (Bpq10, 100 cM on Chr 1; Bpq11, 6 cM on Chr 4; Bpq12, 29 cM on Chr 8) accounting for 29.4% of blood pressure variance. These were epistatic interaction QTLs constructing a small network centered on Chr 4, suggesting the importance of genetic interaction for development of hypertension. The blood pressure QTLs on Chrs 1, 4, and 8 were detected repeatedly in multiple studies using common inbred nonobese mouse strains, implying substantial QTL independent of development of obesity and insulin resistance. These results enhance our understanding of complicated genetic factors of hypertension in metabolic diseases. Eri Nishihara, Shirng-Wern Tsaih, Chieko Tsukahara and Sarah Langley contributed equally to this work.  相似文献   

6.
Quantitative trait locus (QTL) mapping in the mouse typically utilizes inbred strains that exhibit significant genetic and phenotypic diversity. The development of dense SNP panels in a large number of inbred strains has eliminated the need to maximize genetic diversity in QTL studies as plenty of SNP markers are now available for almost any combination of strains. We conducted a QTL mapping experiment using both a backcross (N2) and an intercross (F2) between two genetically similar inbred mouse strains: C57BL/6J (B6) and C57L/J (C57). A set of additive QTLs for activity behaviors was identified on Chrs 1, 9, 13, and 15. We also identified additive QTLs for anxiety-related behaviors on Chrs 7, 9, and 16. A QTL on Chr 11 is sex-specific, and we revealed pairwise interactions between QTLs on Chrs 1 and 13 and Chrs 10 and 18. The Chr 9 activity QTL accounts for the largest amount of phenotypic variance and was not present in our recent analysis of a B6 × C58/J (C58) intercross (Bailey et al. in Genes Brain Behav 7:761–769, 2008). To narrow this QTL interval, we used a dense SNP haplotype map with over 7 million real and imputed SNP markers across 74 inbred mouse strains (Szatkiewicz et al. in Mamm Genome 19(3):199–208, 2008). Evaluation of shared and divergent haplotype blocks among B6, C57, and C58 strains narrowed the Chr 9 QTL interval considerably and highlights the utility of QTL mapping in closely related inbred strains.  相似文献   

7.
The purpose of the present study was to characterize the C57BL/6J, A/J, and AXB/BXA Recombinant Inbred (RI) strains of mice for voluntary alcohol consumption. Quantitative Trait Locus (QTL) analysis was used to provide provisional location of QTLs for alcohol consumption. The inbred strains were screened for levels of alcohol intake (calculated as alcohol preference and absolute alcohol consumption) by receiving 4 days of forced exposure to a 10% (wt/vol) solution of alcohol, followed by 3 weeks of free choice between water and 10% alcohol. A wide and continuous distribution of values for alcohol consumption and preference was obtained in the AXB/BXA RI strains, confirming polygenic influences on alcohol-related behaviors. Significant gender differences were found for both alcohol preference [F28,651= 2.12, p < 0.001] and absolute alcohol consumption [F28,647= 2.57, p < 0.001]. In males, putative QTLs were mapped to chromosomes (Chrs) 2, 5, 7, 10, 11, and 16. Multiple regression analysis indicated that approximately 75% of the genetic variance in alcohol preference in males could be accounted for by three of the QTL regions. Several of the putative QTLs appeared to be male-specific (Tyr on Chr 7; D10Mit126 on Chr 10; D11Mit61 on Chr 11). In females, seven putative QTLs were mapped to Chrs 2, 4, 5, 7, 11, 16, and 19. Approximately 90% of the genetic variance in alcohol preference in females could be accounted for by four QTL regions, as determined by multiple regression. The QTL on Chr 11 near D11Mit35 appeared to be female-specific. This site was close to a female-specific QTL (Alcp2) previously mapped in C57BL/6J × DBA/2J backcrosses by Melo and coworkers (Nat Genet 13, 147, 1996). The QTLs mapped for alcohol preference in the present study must be considered suggestive at the present time, since only D2Mit74 met very strict statistical criteria for significance. However, the concordance across several studies for the loci on Chrs 2, 4, 7, 9, and 11 suggest that some common QTLs influencing alcohol preference have been identified. Confirmation of QTLs mapped in the present study is currently being conducted in a new series of recombinant congenic (RC) strains developed from reciprocal backcrosses between the A/J and C57BL/6J progenitors. The concomitant use of both RI and RC strains developed from the same progenitors should provide a powerful means of detecting, confirming, and mapping QTLs for alcohol-related traits. Received: 25 August 1998 / Accepted: 8 October 1998  相似文献   

8.
Linkage studies have identified many chromosomal regions containing obesity genes in mice. However, only a few of these quantitative trait loci (QTLs) have been used to guide the production of congenic mouse strains that retain obesity phenotypes. We seek to identify chromosomal regions containing obesity genes in the BSB model of spontaneous obesity because the BSB model is a multigenic obesity model. Previous studies identified QTLs on Chromosomes (Chrs) 2, 6, 7,12, and 15. BSB mice are made by backcross of lean C57BL/6J × Mus spretus. F1s were backcrossed to C57BL/6J mice to produce BSB progeny. We have constructed a new BSB cross and produced congenic mice with obesity phenotypes by marker-directed selection called B6.S–D2Mit194D2Mit311. We found a highly significant QTL for percentage body lipid on Chr 2 just proximal to the Agouti locus. Chr 2 congenics were constructed to determine whether the main effects would be detectable. We observed highly significant linkage of the Chr 2 congenic containing Agouti and containing markers distal to D2Mit311 and proximal to D2Mit194. Thus, this congenic contains approximately 14.6 cM or 30 Mb (about 1.1% of the spretus mouse genome) and several hundred genes. The obesity phenotype of the QTL is retained in the congenic. The congenic can now be used to model the genetic and physiological basis for a relatively simple, perhaps monogenic, obesity.  相似文献   

9.
C57BL/6J-c2J (c2J) albino mice showed much less damage to their photoreceptors after exposure to prolonged light than BALB/c mice and seven other albino strains tested. There were no gender differences, and preliminary studies suggested that the c2J relative protective effect was a complex trait. A genome-wide scan using dinucleotide repeat markers was carried out for the analysis of 194 progeny of the backcross (c2J × BALB/c)F1× c2J and the thickness of the outer nuclear layer (ONL) of the retina was the quantitative trait reflecting retinal damage. Our results revealed a strong and highly significant quantitative trait locus (QTL) on mouse Chromosome (Chr) 3 that contributes almost 50% of the c2J protective effect, and three other very weak but significant QTLs on Chrs 9, 12, and 14. Interestingly, the Chrs 9 and 12 QTLs corresponded to relative susceptibility alleles in c2J (or relative protection alleles in BALB/c), the opposite of the relative protective effect of the QTLs on Chrs 3 and 14. We mapped the Rpe65 gene to the apex of the Chr 3 QTL (LOD score = 19.3). Northern analysis showed no difference in retinal expression of Rpe65 message between c2J and BALB/c mice. However, sequencing of the Rpe65 message revealed a single base change in codon 450, predicting a methionine in c2J and a leucine in BALB/c. When the retinas of aging BALB/c and c2J mice reared in normal cyclic light were compared, the BALB/c retinas showed a small but significant loss of photoreceptor cells, while the c2J retinas did not. Finding light damage-modifying genes in the mouse may open avenues of study for understanding age-related macular degeneration and other retinal degenerations, since light exposures may contribute to the course of these diseases. Received: 14 December 1999 / Accepted: 18 February 2000  相似文献   

10.
To understand how genotype influences fat patterning and obesity, we conducted an autosomal genome scan using male and female F2 hybrids between the C57BL/6ByJ and 129P3/J parental mouse strains. Mice were studied in middle-adulthood and were fed a low-energy, low-fat diet during their lifetime. We measured the weight of the retroperitoneal adipose depot (near the kidney) and the gonadal adipose depot (near the epididymis in males and ovaries in females). An important feature of the analysis was the comparison of linkage results for absolute adipose depot weight and depot weight adjusted for body size, i.e., relative weight. We detected 67 suggestive linkages for six phenotypes, which fell into one of three categories: those specific to absolute but not relative depot weight (Chr 5, 11, and 14), those specific to relative but not absolute depot weight (Chr 9, 15, and 16), and those involving both (Chr 2 and 7). Some quantitative trait loci (QTLs) affected one adipose depot more than another: Retroperitoneal depot weight was linked to Chr 8, 11, 12, and 17, but the linkage effects for the gonadal depot were stronger for Chr 5, 7, and 9. Several linkages were specific to sex; for instance, the absolute weight of gonadal fat was linked to Chromosome 7 in male (LOD = 3.4) but not female mice (LOD = 0.2). Refining obesity as a phenotype may uncover clues about gene function that will assist in positional cloning efforts.  相似文献   

11.
Mice have proved to be a powerful model organism for understanding obesity in humans. Single gene mutants and genetically modified mice have been used to identify obesity genes, and the discovery of loci for polygenic forms of obesity in the mouse is an important next step. To pursue this goal, the inbred mouse strains 129P3/J (129) and C57BL/6ByJ (B6), which differ in body weight, body length, and adiposity, were used in an F2 cross to identify loci affecting these phenotypes. Linkages were determined in a two-phase process. In the first phase, 169 randomly selected F2 mice were genotyped for 134 markers that covered all autosomes and the X Chromosome (Chr). Significant linkages were found for body weight and body length on Chr 2. In addition, we detected several suggestive linkages on Chr 2 (adiposity), 9 (body weight, body length, and adiposity), and 16 (adiposity), as well as two suggestive sex-dependent linkages for body length on Chrs 4 and 9. In the second phase, 288 additional F2 mice were genotyped for markers near these regions of linkage. In the combined set of 457 F2 mice, six significant linkages were found: Chr 2 (Bwq5, body weight and Bdln3, body length), Chr 4 (Bdln6, body length, males only), Chr 9 (Bwq6, body weight and Adip5, adiposity), and Chr 16 (Adip9, adiposity), as well as several suggestive linkages (Adip2, adiposity on Chr 2; Bdln4 and Bdln5, body length on Chr 9). In addition, there was a suggestive linkage to body length in males on Chr 9 (Bdln4). For adiposity, there was evidence for epistatic interactions between loci on Chr 9 (Adip5) and 16 (Adip9). These results reinforce the concept that obesity is a complex trait. Genetic loci and their interactions, in conjunction with sex, age, and diet, determine body size and adiposity in mice.  相似文献   

12.
Five strains of mice commonly used in transgenic and knockout production were compared with regard to genetic background and behavior. These strains were: C57BL/6J, C57BL/6NTac, 129P3/J (formerly 129/J), 129S6/SvEvTac (formerly 129/SvEvTac) and FVB/NTac. Genotypes for 342 microsatellite markers and performance in three behavioral tests (rotorod, open field activity and habituation, and contextual and cued fear conditioning) were determined. C57BL/6J and C57BL/6NTac were found to be true substrains; there were only 12 microsatellite differences between them. Given the data on the genetic background, one might predict that the two C57BL/6 substrains should be very similar behaviorally. Indeed, there were no significant behavioral differences between C57BL/6J and C57BL/6NTac. Contrary to literature reports on other 129 strains, 129S6/SvEvTac often performed similarly to C57BL/6 strains, except that it was less active. FVB/NTac showed impaired rotorod learning and cued fear conditioning. Therefore, both 129S6/SvEvTac and C57BL/6 are recommended as background strains for targeted mutations when researchers want to evaluate their mice in any of these three behavior tests. However, any transgene on the FVB/NTac background should be transferred to B6. Habituation to the open field was analyzed using the parameters: total distance, center distance, velocity and vertical activity. Contrary to earlier studies, we found that all strains habituated to the open field in at least two of these parameters (center distance and velocity).  相似文献   

13.
In 183 male progeny derived from a backcross between the FGS/Kist strain, a new mouse model for focal glomerulosclerosis (FGS) in humans, and the standard normal strain, C57BL/6J, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting the glomerulosclerosis index (GSI) based on histological observation as well as kidney and body weights. Two QTLs for GSI (Gsi1-2) located on chromosomes (Chrs) 8 and 10, a kidney weight QTL (Kdw1) on Chr 19, and a body weight QTL (Bdw1) on Chr 13 were detected at the genome-wide 5% or less level. The allele derived from FGS/Kist increased GSI at Gsi1, but decreased it at Gsi2. The mice homozygous for the FGS/Kist allele decreased body and kidney weights. The identified QTLs accounted for 5-8% of the phenotypic variance.  相似文献   

14.
Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice   总被引:11,自引:1,他引:10  
Genetic analyses for loci regulating bone mineral density have been conducted in a cohort of F2 mice derived from intercross matings of (C57BL/6J × CAST/EiJ)F1 parents. Femurs were isolated from 714 4-month-old females when peak adult bone density had been achieved. Bone mineral density (BMD) data were obtained by peripheral quantitative computed tomography (pQCT), and genotype data were obtained by Polymerase Chain Reaction (PCR) assays for polymorphic markers carried in genomic DNA of each mouse. Genome-wide scans for co-segregation of genetic marker data with high or low BMD revealed loci on eight different chromosomes, four of which (Chrs 1, 5, 13, and 15) achieved conservative statistical criteria for suggestive, significant, or highly significant linkage with BMD. These four quantitative trait loci (QTLs) were confirmed by a linear regression model developed to describe the main effects; none of the loci exhibited significant interaction effects by ANOVA. The four QTLs have been named Bmd1 (Chr 1), Bmd2 (Chr 5), Bmd3 (Chr 13), and Bmd4 (Chr 15). Additive effects were observed for Bmd1, recessive for Bmd3, and dominant effects for Bmd2 and Bmd4. The current large size of the QTL regions (6→31 cM) renders premature any discussion of candidate genes at this time. Fine mapping of these QTLs is in progress to refine their genetic positions and to evaluate human homologies. Received: 5 May 1999 / Accepted: 22 June 1999  相似文献   

15.
Studying the behavior of genetic background strains provides important information for the design and interpretation of cognitive phenotypes in mutant mice. Our experiments examined the performance of three commonly used strains (C57BL/6J, 129S6, DBA/2J) on three behavioral tests for learning and memory that measure very different forms of memory, and for which there is a lack of data on strain differences. In the social transmission of food preference test (STFP) all three strains demonstrated intact memory for an odor-cued food that had been sampled on the breath of a cagemate 24 hours previously. While C57BL/6J and 129S6 mice showed good trace fear conditioning, DBA/2J mice showed a profound deficit on trace fear conditioning. In the Barnes maze test for spatial memory, the 129S6 strain showed poor probe trial performance, relative to C57BL/6J mice. Comparison of strains for open field exploratory activity and anxiety-like behavior suggests that poor Barnes maze performance reflects low exploratory behavior, rather than a true spatial memory deficit, in 129S6 mice. This interpretation is supported by good Morris water maze performance in 129S6 mice. These data support the use of a C57BL/6J background for studying memory deficits in mutant mice using any of these tasks, and the use of a 129S6 background in all but the Barnes maze. A DBA/2J background may be particularly useful for investigating the genetic basis of emotional memory using fear conditioning.  相似文献   

16.
The NZB/B1NJ (NZB) mouse strain exhibits high cholesterol and HDL levels in blood compared with several other strains of mice. To study the genetic regulation of blood lipid levels, we performed a genome-wide linkage analysis in 542 chow-fed F2 female mice from an NZBxRF/J (RF) intercross and in a combined data set that included NZBxRF and MRL/MpJxSJL/J intercrosses. In the NZBxRF F2 mice, the cholesterol and HDL concentrations were influenced by quantitative trait loci (QTL) on chromosome (Chr) 5 [logarithm of odds (LOD) 17-19; D5Mit10] that was in the region identified earlier in crosses involving NZB mice, but two QTLs on Chr 12 (LOD 4.7; D12Mit182) and Chr 19 (LOD 5.7; D19Mit1) were specific to the NZBxRF intercross. Triglyceride levels were affected by two novel QTLs at D12Mit182 (LOD 8.7) and D15Mit13 (LOD 3.5). The combined-cross linkage analysis (1,054 mice, 231 markers) 1) identified four shared QTLs (Chrs 5, 7, 14, and 17) that were not detected in one of the parental crosses and 2) improved the resolution of two shared QTLs. In summary, we report additional loci regulating lipid levels in NZB mice that had not been identified earlier in crosses involving the NZB strain of mice. The identification of shared loci from multiple crosses increases confidence toward finding the QTL gene.  相似文献   

17.
We have completed whole-genome scans for quantitative trait loci (QTLs) associated with acute ethanol-induced activation in the six F2 intercrosses that can be formed from the C57BL/6J (B6), DBA/2J (D2) , BALB/cJ (C), and LP/J (LP) inbred strains. The goal was to test the hypothesis that given the relatively simple structure of the laboratory mouse genome, the same QTLs will be detected in multiple crosses which in turn will provide support for the strategy of multiple-cross mapping (MCM). QTLs with LOD scores greater than 4 were detected on Chrs 1, 2, 3, 8, 9, 13, 14, and 16. Only for the QTL on distal Chr 1 was there convincing evidence that the same or at least a very similar QTL was detected in multiple crosses. We also mapped the Chr 2 QTL directly in heterogeneous stock (HS) animals derived from the four inbred strains. At G19 the QTL was mapped to an approximately 3-Mbp interval and this interval was associated with a haplotype block with a largely biallelic structure: B6-L:C-D2. We conclude that mapping in HS animals not only provides significantly greater QTL resolution, at least in some cases it provides significantly more information about the QTL haplotype structure.  相似文献   

18.
Long- and Short-Sleep (LS and SS) mice were selectively bred for differences in ethanol-induced loss of the righting reflex (LORR) and have been found to differ in LORR induced by various anesthetic agents. We used a two-stage mapping strategy to identify quantitative trait loci (QTLs) affecting duration of LORR caused by the general anesthetic etomidate and brain levels of etomidate (BEL) following regain of the righting reflex. Analysis of recombinant-inbred strains derived from a cross between LS and SS mice (LSXSS) yielded a heritability estimate of 0.23 for etomidate-induced LORR and identified one marker that showed suggestive linkage for a QTL, on mouse Chromosome (chr) 12. Mapping in an F(2) population derived from a cross between inbred LS and SS (ILS and ISS) revealed a significant QTL for etomidate-induced LORR on Chr 12, and two significant QTLs mediating BEL on Chrs 6 and 12. Several QTLs showing suggestive linkage for etomidate-induced LORR and BEL were also identified in the F(2) population. Brain levels of etomidate in the RI and F(2) mice suggested that differences in LORR were due to differential central nervous system sensitivity, rather than differential etomidate metabolism. Interestingly, the region on Chr 7 has also been identified as a region influencing ethanol-induced LORR, suggesting the possibility of a common genetic mechanism mediating etomidate and ethanol sensitivity. These QTL regions need to be further narrowed before the testing of candidate genes is feasible.  相似文献   

19.
The activity of mice in their home cage is influenced greatly by the cycle of light and dark. In addition, home-cage activity shows remarkable time-dependent changes that result in a prominent temporal pattern. The wild-derived mouse strain MSM/Ms (MSM) exhibits higher total activity in the home cage than does C57BL/6 (B6), a commonly used laboratory strain. In addition, there is a clear strain difference in the temporal pattern of home-cage activity. This study aimed to clarify the genetic basis of strain differences in the temporal pattern of home-cage activity between MSM and B6. Through the comparison of temporal patterns of home-cage activity between B6 and MSM, the pattern can be classified into five temporal components: (1) resting phase, (2) anticipation phase, (3) 1st phase, (4) 2nd phase, and (5) 3rd phase. To identify quantitative trait loci (QTLs) involved in these temporal components, we used consomic strains established from crosses between B6 and MSM. Five consomic strains, for Chrs 2T (telomere), 3, 4, 13, and 14, showed significantly higher total activity than B6. In contrast, the consomic strains of Chrs 6C (centromere), 7T, 9, 11, and 15 were less active than B6. This indicates that multigenic factors regulate the total activity. Further analysis showed an impact of QTLs on the temporal components of home-cage activity. The present data showed that each temporal component was regulated by different combinations of multigenic factors, with some overlap. These temporal component-related QTLs are important to understand fully the genetic mechanisms that underlie home-cage activity.  相似文献   

20.
Quantitative trait locus (QTL) mapping efforts in alcohol (ethanol) research are beginning to generate promising data that may ultimately lead to the identification of genes influencing alcohol addiction. Rodents have been extensively utilized to study ethanol's rewarding and aversive effects, and to demonstrate the existence of genetic influences on traits such as free-choice ethanol-consumption, ethanol-conditioned place preference and ethanol-conditioned taste aversion. The purpose of the current investigation was to verify or eliminate from further consideration putative QTLs for free-choice ethanol consumption originally identified in BXD Recombinant Inbred (RI) strains and other informative genetic crosses. B6D2F2 mice were utilized in a verification testing strategy to evaluate the viability of putative ethanol consumption QTLs. When data were combined from BXD RI, B6D2F2 and short-term selected line (STSL) mapping studies, verification was obtained for two QTLs, one on Chromosome (Chr) 9 (proximal-mid) and another on Chr 2 (distal), and suggestive verification was obtained for QTLs on Chrs 2 (proximal), 3, 4, 7, and 15. In addition, the possible genetic association of ethanol consumption with conditioned place preference was evaluated. Genetic correlations were estimated from BXD RI strain means, and QTL maps for these traits were compared to evaluate the possibility of a genetic association. The correlational analysis yielded a trend (r = 0.34, p = 0.09), but no statistically significant results. However, comparisons of QTL mapping results between phenotypes suggested some possible genetic overlap for these traits, both putative measures of ethanol reward. These data suggest that the determinants of these two measures are genetically diverse, but may share some common genetic elements. Received: 15 September 1998 / Accepted: 8 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号