首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. J. Eisen  B. H. Johnson 《Genetics》1981,99(3-4):513-524
Correlated responses in male reproductive traits were determined at 4, 6 and 8 weeks of age in lines of mice selected for large litter size (L+), large 6-week body weight (W+), large litter size and small body weight (L+W-) and small litter size and large body weight (L-W+), and in an unselected control (K). Concentration of serum testosterone and weights of testes, seminal vesicles, epididymides and adrenal glands increased with age. Line differences in testosterone concentration were not detected. L+ and W+ males exhibited positive correlated responses in testes, epididymides and seminal vescile weights. Testis weight adjusted for body weight was significantly larger for L+ than controls and approached significance for W+. Realized genetic correlation betestis weight and litter size was 0.60 ± 0.04, and the realized partial genetic correlation holding body weight constant was 0.42. Therefore, pleiotropic loci, acting via the hypothalamic-pituitary axis, affect testis weight and litter size independently of body weight. Additionally, genes influencing overall growth have a pleiotropic effect on testis weight and litter size in mice; the realized genetic correlations of body weight with testis weight and with litter size were 0.60 ± 0.03 and 0.52 ± 0.10. Testis weight increased in both L+W- and L-W+ males. The positive correlated response in L+W- may have resulted from changes in frequency of genes controlling reproductive processes; whereas, in L-W+ it could have been the result of changes in the frequency of genes associated with body weight.  相似文献   

2.
Eisen EJ 《Genetics》1978,88(4):781-811
Individual selection based on female performance only was conducted in four lines of mice: L+ for increased litter size, W+ for increased 6-week body weight, L-W+ for a selection index aimed at decreasing litter size and increasing 6-week body weight and L+W- for a selection index aimed at increasing litter size and decreasing 6-week body weight. A fifth line (K) served as an unselected control. All litters were standardized to eight mice at one day of age. Expected heritability was based on twice the regression of offspring on dam (h2d), which contains additive genetic variance due to direct (σ2Ao) and maternal (σ2Am) effects and their covariance (σAoAm). Responses and correlated responses were measured either deviated (method 1) or not deviated (method 2) from the control line. Realized heritabilities (h2R) for litter size were 0.19 ± 0.04 (1) and 0.16 ± 0.03 (2), which were similar to h 2d of 0.17 ± 0.04. The h2 R for 6-week body weight of 0.55 ± 0.07 (1) and 0.44 ± 0.07 (2) agreed with h2d of 0.42 ± 0.02. Realized genetic correlations (r*GR) between litter size and 6-week body weight calculated from the double-selection experiment were 0.52 ± 0.10 (1) and 0.52 ± 0.13 (2), which were not significantly different from the base population estimate of r* Gd = 0.63 ± 0.14. Divergence (L-W + minus L+W-) in the antagonistic index selection lines was 0.21 ± 0.01 index units (I = 0.305 PW - 0.436 PL, where P W and PL are the phenotypic values for 6-week body weight and litter size, respectively.). The h2 R of index units of 0.14 ± 0.02 calculated from divergence agreed with h2d of 0.14 ± 0.04. Divergences in litter size (-0.19 ± 0.07) and 6-week body weight (0.46 ± 0.10) were in the expected direction. Antagonistic index selection yielded about one-half the expected divergence in litter size, while divergence in 6-week body weight was only slightly less than expected. Realized genetic correlations indicated that litter size, 6-week body weight and index units each showed positive pleiotropy with 3-week body weight, postweaning gain and weight at vaginal introitus and negative pleiotropy with age at vaginal introitus. Sex ratio and several components of fitness (days from joining to parturition, percent fertile matings and percent perinatal survival) did not change significantly in the selected lines.  相似文献   

3.
Summary Correlated responses in growth, body composition and efficiency were evaluated in lines of mice selected in the following ways: W+T i o , increased six-week body weight (WT6); W ° T i + , increased six-week tail length (TL6); W+T i , increased WT6 and decreased TL6; WT i + , decreased WT6 and increased TL6; M16, increased three-to six-week postweaning gain (PWG). Each of the first four selection treatments had two replicate lines (i = 1, 2) selected for 13 generations and the fifth treatment had one line selected for 30 generations. All lines were derived from a randombred ICR albino population which served as a control. Additional traits studied were three-week body weight and tail length, postweaning gain in tail length, percent body composition (ash, fat, moisture and protein) at six weeks of age, and three-to six-week feed consumption (CONS) and efficiency (EFF = PWG/CONS). Efficiency of body constituent gains (ash, fat, protein and caloric value) were determined by dividing each constituent by CONS. Relative to selection treatments, replicate variation in the array of traits was small and was primarily attributable to the effects of genetic drift; more frequent significant replicate differences among traits in W+T were associated with a replicate difference in cumulative selection differentials. Selection for different criteria involving WT6 and TL6 did not change the allometric relationship between tail length and body weight in the three-to six-week age interval. The significant divergence between W+T ° and W °T+ and between W+T and WT+ was as expected for WT6 and TL6. Significant asymmetry of selection response between W+T and WT+ for WT6 and TL6 was attributed to maternal effects. In agreement with theory, antagonistic index selection generally yielded smaller genetic responses than single trait selection. Positive correlated responses in CONS and EFF were found for M16 and W+T °. Significant correlated changes in CONS (positive in W °T+ and negative in WT+) were not accompanied by a significant change in EFF. In contrast, W+T evinced an increased EFF and no change in CONS. Percent fat increased significantly in W+T ° and M16. For W+To, W+T and M16, an increased energetic, fat and ash efficiency was observed, whereas M16 exhibited a positive increment in protein efficiency as well. Among selection treatment means, there were high positive correlations between WT6 and fat weight, protein weight, percent fat, CONS and EFF and a high negative correlation between WT6 and percent protein.Paper No.4916 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, N.C. 27607. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Experiment Station of the products named, nor criticism of similar ones not mentioned.  相似文献   

4.
Offspring born from normal litter size (10 to 15 piglets) but classified as having lower than average birth weight (average of the sow herd used: 1.46 ± 0.2 kg; mean ± s.d.) carry at birth negative phenotypic traits normally associated with intrauterine growth restriction, such as brain-sparing and impaired myofiber hyperplasia. The objective of the study was to assess long-term effects of intrauterine crowding by comparing postnatal performance, carcass characteristics and pork quality of offspring born from litters with higher (>1.7 kg) or lower (<1.3 kg) than average litter birth weight. From a population of multiparous Swiss Large White sows (parity 2 to 6), 16 litters with high (H = 1.75 kg) or low (L = 1.26 kg) average litter birth weight were selected. At farrowing, two female pigs and two castrated pigs were chosen from each litter: from the H-litters those with the intermediate (HI = 1.79 kg) and lowest (HL = 1.40 kg) birth weight, and from L-litters those with the highest (LH = 1.49 kg) and intermediate (LI = 1.26 kg) birth weight. Average birth weight of the selected HI and LI piglets differed (P < 0.05), whereas birth weight of the HL- and LH-piglets were similar (P > 0.05). These pigs were fattened in group pen and slaughtered at 165 days of age. Pre-weaning performance of the litters and growth performance, carcass and meat quality traits of the selected pigs were assessed. Number of stillborn and pig mortality were greater (P < 0.05) in L- than in H-litters. Consequently, fewer (P < 0.05) piglets were weaned and average litter weaning weight decreased by 38% (P < 0.05). The selected pigs of the L-litters displayed catch-up growth during the starter and grower–finisher periods, leading to similar (P > 0.05) slaughter weight at 165 days of age. However, HL-gilts were more feed efficient and had leaner carcasses than HI-, LH- and LI-pigs (birth weight class × gender interaction P < 0.05). Meat quality traits were mostly similar between groups. The marked between-litter birth weight variation observed in normal size litters had therefore no evident negative impact on growth potential and quality of pigs from the lower birth weight group.  相似文献   

5.
In order to assess the effects of undernutrition during the pre-weaning period on polyphosphoinositide (PolyPI) pools in rat cerebral cortex, brain stem, and cerebellum, dams were fed 5% (L) or 22% (L+) protein diets from birth to weaning and the pups were used at this age for analyses. To examine rehabilitation post-weaning, L and L+ pups were fed 22% protein diets (P+) for an additional six week period. Rats were decapitated and the dissection begun either immediately (0 min samples) or 10 min later (10 min samples). Body and tissue weights, and cerebroside levels were determined in addition to PolyPI concentrations. In brain the extent of disappearance of PolyPI during the 10 min post-mortem period paralleled the content of gray matter: cerebral cortex > cerebellum > brain stem in all groups regardless of diet. Levels of PtdIns4P and PtdIns4,5P2 were decreased by 40% and 70% respectively in cerebral cortex of L 0 min samples. Deficits of both lipids in brain stem and cerebellum were 40–50%. In the L 10 min samples, deficits were 20–30% in all three regions as compared with L+ 10 min levels, indicating the presence of a portion of both lipids affected only moderately by nutritional insufficiency. The effects on this relatively inert pool, much of it localized in myelin, were reversed on nutritional rehabilitation. The Poly PI pool lost post-mortem in L+ brain regions was practically absent in L brain regions and was not restored in L P+ animals. Thus, this study indicates that a metabolically labile pool, primarily located in gray matter structures, is more sensitive to nutritional deprivation during the pre-weaning period than the more stable pool. The precise role and function of these pools remain to be determined.  相似文献   

6.
The fluxes and transformations of nitrogen (N) were investigated from 1985 through 1987 at the Emerald Lake watershed (ELW), a 120 ha high-elevation catchment located in the southern Sierra Nevada, California, USA. Up to 90% of annual wet deposition of N was stored in the seasonal snowpack; NO 3 and NH 4 + were released from storage in the form of an ionic pulse, where the first fraction of meltwater draining from the snowpack had concentrations of NO 3 and NH 4 + as high as 28 eq L–1 compared to bulk concentrations of <5 eq L–1 in the snowpack. The soil reservoir of organic N (81 keq ha–1) was about ten times the N storage in litter and biomass (12 keq ha–1). Assimilation of N by vegetation was balanced by the release of N from soil mineralization, nitrification, and litter decay. Mineralization and nitrification processes produced 1.1 keq ha–1 yr–1 of inorganic N, about 3 1/2 times the loading of N from wet and dry deposition. Less than 1% of the NH 4 + in wet and dry deposition was exported from the basin as NH 4 + . Biological assimilation was primarily responsible for retention of NH 4 + in the basin, releasing one mode of H+ for every mole of NH 4 + retained and neutralizing about 25% of the annual acid neutralizing capacity produced by mineral weathering in the basin. Nitrate concentrations in stream waters reached an annual peak during the first part of snowmelt runoff, with maximum concentrations in stream water of 20 eq L–1, more than 4 times the volume-weighted mean annual concentrations of NO 3 in wet deposition. This annual peak in stream water NO 3 was consistent with the release of NO 3 from the snowpack in the form of an ionic pulse; however soil processes occurring underneath the winter snowpack were another potential source of this NO 3 . Concentrations of stream water NO 3 during the summer growing season were always near or below detection limits (0.5 eq L–1).  相似文献   

7.
Despite the long history of purebred dogs and the large number of existing breeds, few studies of canine litter size based upon a large number of breeds exist. Previous studies are either old or include only one or a few selected breeds. The aim of this large-scale retrospective study was to estimate the mean litter size in a large population of purebred dogs and to describe some factors that might influence the litter size. A total of 10,810 litters of 224 breeds registered in the Norwegian Kennel Club from 2006 to 2007 were included in the study. The overall mean litter size at birth was 5.4 (± 0.025). A generalized linear mixed model with a random intercept for breed revealed that the litter size was significantly influenced by the size of the breed, the method of mating and the age of the bitch. A significant interaction between breed size and age was detected, in that the expected number of puppies born decreased more for older bitches of large breeds. Mean litter size increased with breed size, from 3.5 (± 0.04) puppies in miniature breeds to 7.1 (± 0.13) puppies in giant breeds. No effect on litter size was found for the season of birth or the parity of the bitch. The large number of breeds and the detail of the registered information on the litters in this study are unique. In conclusion, the size of the breed, the age of the bitch and the method of mating were found to influence litter size in purebred dogs when controlling for breed, with the size of the breed as the strongest determinant.  相似文献   

8.
Non-selected and sodium chloride selected callus lines of Vacdnium corymbosum L.cv Blue Crop and cv. Denise Blue were grown on media supplemented with 0–100 mM NaCl. For both cultivars, fresh weight and dry weight yields were greater in selected lines on all levels of NaCl. Selected lines of Blue Crop displayed better growth than selected lines of Denise Blue at most concentrations of NaCl. Internal Na+ and Cl concentrations in selected and non-selected lines of both cultivars increased as external concentration was raised. However, selected lines of Blue Crop and Denise Blue accumulated more Na+ and Cl than non-selected lines. Selected lines of both cultivars maintained higher levels of K+ than non-selected lines on all external NaCl levels. Selected lines of Blue Crop had higher levels of Na+ and Cl than that of Denise Blue. The results suggest Na+ and Cl accumulation could be a mechanism allowing better growth in selected lines at moderate salinity levels (50–75 mM NaCl).  相似文献   

9.
An experiment was performed to study the effect of the feeding program and age at first mating on body growth, feed intake, reproductive performance, and culling of rabbit does over three parities, using 155 does of a strain of New Zealand white rabbits. Three treatments were applied. Ad libitum feeding until first insemination at 14.5 wk (AL-14.5) or 17.5 wk of age (AL-17.5), and restrictive feeding from five wk of age until first insemination at 17.5 wk of age (R-17.5). At first insemination, the BW of AL-14.5 and R-17.5 was similar (3 907 vs. 3 791 +/- 46 g, respectively), whereas AL-17.5 does were heavier (4 390 +/- 46 g, P < 0.001). During reproduction, performance of AL-17.5 was not improved compared to AL-14.5 and R-17.5 does. Al-17.5 does showed a lower feed intake during the first gestation (-25%) and first parity (-10%) than R- 17.5, resulting in weight loss (-6%) during the first gestation and decreased litter weights (-19%) and litter growth (-14%) in the first parity. Extended first mating by three wk (17.5 vs. 14.5 wk) but similar BW at first mating did not affect feed intake and BW development during the first three parities. However, the number of live born kits and weight at first kindling, and litter growth in the first parity were improved in R-17.5 (+23%, +18%, and +14%, respectively). Reproductive performance can be improved by restricted feeding during rearing and extended first insemination to 17.5 wk of age. However, the culling rate was not affected by the rearing strategy.  相似文献   

10.
Summary Kinetic experiments with synchronously sporulating cultures of a homothallic h90 strain of Schizosaccharomyces pombe showed that trehalase activity abruptly increased in the late sporulation process, coinciding with the appearance of visible spores. Trehalase activity was absent in vegetative cells. A set of strains different in genetic constitution at the mating type loci was tested for induction of trehalase on nitrogen-free sporulation medium. The appearance of trehalase activity on the sporulation medium was observed only in sporulating cultures; cultures of homothallic strains (h90) and diploid strains heterozygous for mating type (h+/h), and mixed cultures of heterothallic h+ and h strains. Trehalase activity was not induced in nonsporogenic strains: heterothallic haploid strains (h+ and h), diploid strains homozygous for mating type (h+/h+ and h/h) and the homothallic strain harboring the mutation in the mat2 gene, which was unable to undergo the first meiotic division. Trehalose accumulation on the sporulation medium was observed solely in the sporulating cultures. These results led us to conclude that the induction of trehalase activity as well as the accumulation of trehalose in the medium lacking nitrogen sources was a sporulation-specific event under the control of the mating type genes.  相似文献   

11.
In short-term water culture experiments with different 15N labeled ammonium or nitrate concentrations, citrus seedlings absorbed NH4 + at a higher rate than NO3 . Maximum NO3 uptake by the whole plant occurred at 120 mg L–1 NO3 -N, whereas NH4 + absorption was saturated at 240 mg L–1 NH4 +-N. 15NH4 + accumulated in roots and to a lesser degree in both leaves and stems. However, 15NO3 was mostly partitioned between leaves and roots.Adding increasing amounts of unlabeled NH4 + (15–60 mg L–1 N) to nutrient solutions containing 120 mg L–1 N as 15N labeled nitrate reduced 15NO3 uptake. Maximum inhibition of 15NO3 uptake was about 55% at 2.14 mM NH4 + (30 mg L–1 NH4 +-N) and it did not increase any further at higher NH4 + proportions.In a long-term experiment, the effects of concentration and source of added N (NO3 or NH4 +) on nutrient concentrations in leaves from plants grown in sand were evaluated. Leaf concentration of N, P, Mg, Fe and Cu were increased by NH4 + versus NO3 nutrition, whereas the reverse was true for Ca, K, Zn and Mn.The effects of different NO3 -N:NH4 +-N ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at 120 mg L–1 total N on leaf nutrient concentrations, fruit yield and fruit characteristics were investigated in another long-term experiment with plants grown in sand cultures. Nitrogen concentrations in leaves were highest when plants were provided with either NO3 or NH4 + as a sole source of N. Lowest N concentration in leaves was found with a 75:25 NO3 -N/NH4 +-N ratio. With increasing proportions of NH4 + in the N supply, leaf nutrients such as P, Mg, Fe and Cu increased, whereas Ca, K, Mn and Zn decreased. Yield in number of fruits per tree was increased significantly by supplying all N as NH4 +, although fruit weight was reduced. The number of fruits per tree was lowest with the 75:25 NO3 -N:NH4 +-N ratio, but in this treatment fruits reached their highest weight. Rind thickness, juice acidity, and colour index of fruits decreased with increasing NH4 + in the N supply, whereas the % pulp and maturity index increased. Percent of juice in fruits and total soluble solids were only slightly affected by NO3 :NH4 + ratio.  相似文献   

12.
Studies on wild Eurasian lynx (Lynx lynx) have revealed variation in reproduction between areas, years and individuals. In order to explore potential causes for this variation other than food supply, we analysed data from captive lynx, which provide conditions with minimal environmental variation as all were fed ad libitum. Data from 37 individual female lynx were available from 20 zoos in Norway, Sweden, Finland, Switzerland and the Czech Republic. Data on 177 reproductive events (where a male was available to the female at mating time) are presented. Of these events, 85% resulted in litters being born. Average litter size was 1.95, with a variation from 1 to 4. The mean birth date was 26th May, and sex ratio was not significantly different from parity. The probability of reproduction was related to age, with fewer litters produced by the very young (2–3-year old), and no sign of a senescence effect. However, a clear effect of senescence on litter size was evident. The captive lynx did not have higher reproductive rates than wild lynx, indicating that either factors other than food supply are driving the variation in wild lynx reproduction, or that a factor such as stress may be causing additional variation in the captive population.  相似文献   

13.

Background

Adjustment of body weights for systematic environmental effects such as dam age and litter size is essential for accurate prediction of breeding values in meat sheep and often accomplished by pre-adjusting records using simple multiplicative adjustment factors, which are derived as ratios of least-squares means of weights of lambs in target and reference classes. However, increasing use of multibreed genetic evaluations that incorporate data from both purebred and commercial flocks has generated concerns regarding the ability of simple additive or multiplicative adjustment factors to properly correct for environmental effects in flocks that differ widely in mean performance. Thus, consistency of adjustment factors across flocks and systematic effects of the level of flock performance on these factors were evaluated using data from the US National Sheep Improvement Program.

Methods

We used birth and weaning weights of lambs from 29 flocks that had at least 500 records per flock and represented several terminal-sire sheep breeds. Effects of lamb sex, dam age class and litter size on birth weights, and of dam age class and combined effects of type of birth and rearing on weaning weights were evaluated. Interactions between these effects and flock were assessed. Bias associated with different adjustment protocols was evaluated for high- and low-performance flocks.

Results

Effects of litter size and differences between yearling and adult dams varied (P < 0.001) among flocks. For weaning weights, additive adjustment factors were not associated with the level of flock performance, but multiplicative adjustment factors were strongly and inversely related to flock means for weaning weights (W). Flock-specific adjustment factors (F = αWβ) reduced bias in adjusted weaning weights associated with differences in flock performance. By contrast, simple multiplicative adjustment factors were appropriate to adjust birth weights.

Conclusions

Differences in weaning weights among single, twin, and triplet lambs were inversely related to the level of flock performance. Use of simple multiplicative adjustment factors led to adjustment bias when applied across flocks with large differences in mean performance. This bias was reduced by using additive adjustment factors or multiplicative factors that were derived as simple exponential functions of flock means for weaning weight.  相似文献   

14.
Relationships between month and climatic factors (ambient temperature, relative humidity, RH, and rainfall) with litter size, conception rate, days from weaning to conception and mortalities at birth and preweaning were studied in large white pigs under research station (RS) and commercial farm (CF) conditions. In RS and CF 868 and 572 farrowing records, respectively, were involved. Litter size was almost evenly distributed in all months of the year, at both farms, despite significant (P<0.05) negative but low correlations between litter size and maximum (r=–0.272, RS) and minimum (r=–0.233, CR) temperatures in the month after conception. There were no significant differences in conception rate between months. However under RS conditions there were significant (P<0.05) correlations between minimum temperature and conception rate in the months prior to (r=–0.362) and at conception (r=–0.221). Days from weaning to conception were bimodally distributed with peak values occurring between January and June and October and December. Significant mortality at birth (P<0.05) and preweaning was generally highest in the cold rainy months of May to October. However, only under CF conditions were there significant correlations between minimum temperature in the month of birth and percentage mortalities at birth (r=–0.217) and preweaning (r=–0.250). Rainfall and RH had no significant (P>0.05) correlation with birth and preweaning mortalities.  相似文献   

15.
Birth weight and the neonatal growth rate are reliable indicators of neonatal survival prospects. Data on weight at birth and consecutive weights until 40 days of age were recorded for cheetah cubs in 16 litters. Growth was found to be linear during the first 40 days of life. Weight data were used to evaluate the influence of several factors on birth weight and neonatal growth. The factors used in these analyses were sex, litter identity, litter size, average litter size over the first 40 days, birth weight, parents, gestation length, parity of the dam, and inbreeding. For birth weight and neonatal growth, litter identity was the major explanatory factor (81.8 and 85.3%). For birth weight, a significant influence of gestation length was found (p < 0.05), whereas inbreeding coefficient tended to decrease the birth weight (p = 0.09). Together, gestation length and inbreeding coefficient account for 57.5% of the between‐litter variation for birth weight. Factors with significant influences on neonatal growth are gestation length and parity (p < 0.05). The average litter size over the first 40 days tended to influence neonatal growth (p = 0.07). These three variables together account for 99.9% of the between‐litter variation for neonatal growth during the first 40 days of life. A comparison of neonatal growth between mother‐raised and hand‐raised cubs revealed a lower growth rate in hand‐raised cubs (45 vs. 27 g/day). Zoo Biol 18:129–139, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
A selected Glycine max (L.) salt-tolerant calluscell line (R100) was significantly more tolerant to salt than a salt-sensitiveline (S100) during exposure to salt stress. Growth (Fresh and Dry weights) ofthe R100 cell line declined significantly at NaCl concentrations greater than 75mM, while growth of the S100 cell line was already impaired at 25mM NaCl. Levels of Na+ and Cl inthe callus were elevated as the salt concentration increased, whileK+, Ca2+ and Mg2+ levels weremarkedly reduced. The lower s reduction and Na+accumulation found in the S100 callus corresponded with the higher callusdehydration during salinity. Calli grown on Miller's basal medium weresupplied with 100 mM NaCl for 12 days and then supplied with mediumwithout NaCl to relieve salinity stress. The Na+ andCl content decreased in both R100 and S100 cell lines duringthe first 24 h and reached normal levels four days after transferto the normal medium. This lower concentration was maintained until the end ofthe experiment. Concurrently, the K+ content andK+/Na+ ratio increased sharply and reached theirhighest levels within 24 h in both salt-sensitive and salt-tolerantcell lines. These data suggest that the inhibitory effects of salinization ongrowth and accumulation of potentially toxic ions (Na+,Cl) can be readily reversed when salinity is relieved.  相似文献   

17.
The nitrogen relations of an inbred line of white clover (Trifolium repens L.) thought to exhibit an abnormally low capacity for NO3 uptake (line LNU) were compared with a line regarded as normal with respect to NO3 uptake (line NNU). Growth, nodulation, N2 fixation and NO3 uptake were measured over 7 weeks in flowing solution culture (Experiment 1) by plants dependent for N acquisition on either (i) NO3 uptake, (ii) NO3 uptake +N2 fixation, or (iii) N2 fixation only. Effects of plant N status on the short-term uptake and translocation of 15NH4 + and 15NO3 were also investigated (Experiment 2). Nitrate uptake per plant by –fix/+NO3 line LNU was 50% of uptake by line NNU over 35 days, and there were significant differences in specific uptake rates of NO3 between the lines over the first 24 days. The `low NO3 uptake' phenotype was indistinct under +fix/+NO3 treatment. Nitrate lowered specific rates of nitrogen fixation by line NNU but had no effect on line LNU. Only low N status line LNU plants had lower short-term rates of NH4 + and NO3 uptake than line NNU. It is concluded that the `low NO3 uptake' phenotype of line LNU is inconsistently expressed. Circumstantial evidence points to increased NO3 efflux and decreased xylem translocation of NO3 as possible explanations for the lower NO3 uptake by line LNU.  相似文献   

18.
Lalji Singh 《Plant Ecology》1992,98(2):129-140
The present paper elucidates the pattern of leaf and non-leaf fall and quantifies of the total annual input of litter in a dry tropical forest of India. In addition, concentration of selected nutrients in various litter species and their annual return to the forest floor are examined. Total annual input of litter measured in litter traps ranged between 488.0–671.0 g m-2 of which 65–72% was leaf litter fall and 28–35% wood litter fall. 73–81% leaves fall during the winter season. Herbaceous litter fall ranged between 80.0–110.0 g m-2 yr-1. The annual nutrient return through litter fall amounted (kg ha-1): 51.6–69.6 N, 3.1–4.3 P, 31.0–40.0 Ca, 14.0–19.0 K and 3.7–5.0 Na, of which 71–77% and 23–29% were contributed by leaf and wood litter fall, respectively for different nutrients. Input of nutrients through herbaceous litter was: 13.0–16.6 for N, 1.0–1.4 for P, 4.0–5.0 for Ca, 7.9–10.5 for K and 0.8–1.0 kg ha-1 yr-1 for Na.  相似文献   

19.
The O2 mass-transfer coefficient, k L a, decreased by 20% when the viscosity of a simulated broth increased from 1.38 × 10–3 to 3.43 × 10–3 Pa s in a split-cylinder airlift bioreactor with a broth volume of 41 l. When the paper pulp concentration was below 10 g l–1, k L a hardly changed. While at 30 g l–1, k L a decreased by 56%. C2O4 2– and Na+ were found to have some effect on the k L a value.  相似文献   

20.
Cell lines of Oryza sativa L. (cv. Taipei-309) were adapted to 30 mM LiCl and 150 mM NaCl. Both adapted lines were considerably more tolerant than non adapted line when grown on 200, 250 and 300 mM NaCl and 30 mM LiCl stresses. The tolerance of LiCl-adapted line to NaCl (150 to 300 mM) and the tolerance of NaCl-adapted cells line to LiCl (30 mM) indicated that there was a cross-adaptation towards alkali metals (Na+ and Li+) not the Cl. Na+ and K+ contents of all lines which increased with increasing medium salinity but to a different degree. The increase in Na+ and K+ content in NaCl-adapted and non-adapted lines were comparable, while LiCl-adapted line accumulated significantly lower Na+and higher K+ content. Proline content of all lines increased with the increase in NaCl-stress but the magnitude of increase was much higher in the LiCl-adapted than other lines. The differential response of adapted lines to NaCl stress in accumulating proline and maintaining the ionic contents reveals that adapted lines have evolved different features of adaptation to cope with NaCl stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号