首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid rafts are critical to the assembly of the T-cell receptor (TCR) signaling machinery. It is not known whether lipid raft properties differ in CD4+ and CD8+ T cells and whether there are age-related differences that may account in part for immune senescence. Data presented here showed that time-dependent interleukin-2 (IL-2) production was different between CD4+ and CD8+ T cells. The defect in IL-2 production by CD4+ T cells was not due to lower levels of expression of the TCR or CD28. There was a direct correlation between the activation of p56(Lck) and LAT and their association/recruitment with the lipid raft fractions of CD4+ and CD8+ T cells. p56Lck, LAT and Akt/PKB were weakly phosphorylated in lipid rafts of stimulated CD4+ T cells of elderly as compared to young donors. Lipid rafts undergo changes in their lipid composition (ganglioside M1, cholesterol) in CD4+ and CD8+ T cells of elderly individuals. This study emphasizes the differential role of lipid rafts in CD4+ and CD8+ T-cell activation in aging and suggests that the differential localization of CD28 may explain disparities in response to stimulation in human aging.  相似文献   

2.
Formation of an immunological synapse (IS) between APCs and T CD4(+) lymphocytes is a key event in the initiation and the termination of the cognate immune response. We have analyzed the contribution of the APC to IS formation and report the implication of the actin cytoskeleton, the signaling proteins and the lipid rafts of B lymphocytes. Recruitment of MHC class II molecules to the IS is concomitant with actin cytoskeleton-dependent B cell raft recruitment. B cell actin cytoskeleton disruption abrogates both IS formation and T cell activation, whereas protein kinase C inhibition only impairs T cell activation. Pharmacological B cell lipid raft disruption inhibited peptide-dependent T lymphocyte activation and induced peptide-independent but HLA-DR-restricted APC-T cell conjugate formation. Such peptide-independent conjugates did not retain the ability to activate T cells. Thus, B cell lipid rafts are bifunctional by regulating T cell activation and imposing peptide stringency.  相似文献   

3.
In T lymphocytes, lipid rafts are preferred sites for signal transduction initiation and amplification. Many cell membrane receptors, such as the TCR, coreceptors, and accessory molecules associate within these microdomains upon cell activation. However, it is still unclear in most cases whether these receptors interact with rafts through lipid-based amino acid modifications or whether raft insertion is driven by protein-protein interactions. In murine T cells, a significant fraction of CD2 associates with membrane lipid rafts. We have addressed the mechanisms that control the localization of rat CD2 at the plasma membrane, and its redistribution within lipid rafts induced upon activation. Following incubation of rat CD2-expressing cells with radioactive-labeled palmitic acid, or using CD2 mutants with Cys226 and Cys228 replaced by alanine residues, we found no evidence that rat CD2 was subjected to lipid modifications that could favor the translocation to lipid rafts, discarding palmitoylation as the principal mechanism for raft addressing. In contrast, using Jurkat cells expressing different CD2 and Lck mutants, we show that the association of CD2 with the rafts fully correlates with CD2 capacity to bind to Lck. As CD2 physically interacts with both Lck and Fyn, preferentially inside lipid rafts, and reflecting the increase of CD2 in lipid rafts following activation, CD2 can mediate the interaction between the two kinases and the consequent boost in kinase activity in lipid rafts.  相似文献   

4.
Cross-linking of 4-1BB, a member of the TNFR family, increased tyrosine phosphorylation of TCR-signaling molecules such as CD3epsilon, CD3zeta, Lck, the linker for activation of T cells, and SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76). In addition, incubation of activated CD8+ T cells with p815 cells expressing 4-1BBL led to redistribution of the lipid raft domains and Lck, protein kinase C-theta;, SLP-76, and phospholipase C-gamma1 (PLC-gamma1) on the T cell membranes to the areas of contact with the p815 cells and recruitment of 4-1BB, TNFR-associated factor 2, and phospho-tyrosine proteins to the raft domains. 4-1BB ligation also caused translocation of TNFR-associated factor 2, protein kinase C-theta;, PLC-gamma1, and SLP-76 to detergent-insoluble compartments in the CD8+ T cells, and cross-linking of 4-1BB increased intracellular Ca2+ levels apparently by activating PLC-gamma1. The redistribution of lipid rafts and Lck, as well as translocation of PLC-gamma1, and degradation of IkappaB-alpha in response to 4-1BB were inhibited by disrupting the formation of lipid rafts with methyl-beta-cyclodextrin. These findings demonstrate that 4-1BB is a T cell costimulatory receptor that activates TCR-signaling pathways in CD8+ T cells.  相似文献   

5.
By mutagenesis, we demonstrated that the palmitoylation of the membrane-proximal Cys(396) and Cys(399)of CD4, and the association of CD4 with Lck contribute to the enrichment of CD4 in lipid rafts. Ab cross-linking of CD4 induces an extensive membrane patching on the T cell surface, which is related to lipid raft aggregation. The lipid raft localization of CD4 is critical for CD4 to induce the aggregation of lipid rafts. The localization of CD4 in lipid rafts also correlates to the ability of CD4 to enhance receptor tyrosine phosphorylation. Thus, our data suggest that CD4-induced aggregation of lipid rafts may play an additional role in CD4 signaling besides its adhesion to MHC molecules and association with Lck.  相似文献   

6.
7.
The TNF-related apoptosis-inducing ligand was shown to provide a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell proliferation and cytokine production. Although a number of signaling pathways were linked to the TCR/CD3 complex, it is not known how these two receptors cooperate to induce T cell activation. In this study, we show that TRAIL-induced costimulation of T cells depends on activation of the NF-κB pathway. TRAIL induced the NF-κB pathway by phosphorylation of inhibitor of κB factor kinase and protein kinase C in conjunction with anti-CD3. Furthermore, we demonstrated that TRAIL costimulation induced phosphorylation of the upstream TCR-proximal tyrosine kinases, Lck and ZAP70. Ligation of the TRAIL by its soluble receptor, DR4-Fc, alone was able to induce the phosphorylation of Lck and ZAP70 and to activate the NF-κB pathway; however, it was insufficient to fully activate T cells to support T cell proliferation. In contrast, TRAIL engagement in conjunction with anti-CD3, but not TRAIL ligation alone, induced lipid raft assembly and recruitment of Lck and PKC. These results demonstrate that TRAIL costimulation mediates NF-κB activation and T cell proliferation by lipid raft assembly and recruitment of Lck. Our results suggest that in TRAIL costimulation, lipid raft recruitment of Lck integrates mitogenic NF-κB-dependent signals from the TCR and TRAIL in T lymphocytes.  相似文献   

8.
TCR-mediated stimulation induces activation and proliferation of mature T cells. When accompanied by signals through the costimulatory receptor CD28, TCR signals also result in the recruitment of cholesterol- and glycosphingolipid-rich membrane microdomains (lipid rafts), which are known to contain several molecules important for T cell signaling. Interestingly, immature CD4(+)CD8(+) thymocytes respond to TCR/CD28 costimulation not by proliferating, but by dying. In this study, we report that, although CD4(+)CD8(+) thymocytes polarize their actin cytoskeleton, they fail to recruit lipid rafts to the site of TCR/CD28 costimulation. We show that coupling of lipid raft mobilization to cytoskeletal reorganization can be mediated by phosphoinositide 3-kinase, and discuss the relevance of these findings to the interpretation of TCR signals by immature vs mature T cells.  相似文献   

9.
Costimulation by CD28 or lipid-raft-associated CD48 potentiate TCR-induced signals, cytoskeletal reorganization, and IL-2 production. We and others have proposed that costimulators function to construct a raft-based platform(s) especially suited for TCR engagement and sustained and processive signal transduction. Here, we characterize TCR/CD48 and TCR/CD28 costimulation in T cells expressing Lck Src homology 3 (SH3) mutants. We demonstrate that Lck SH3 functions after initiation of TCR-induced tyrosine phosphorylation and concentration of transducers within rafts, to regulate the costimulation-dependent migration of rafts to the TCR contact site. Expression of kinase-active/SH3-impaired Lck mutants disrupts costimulation-dependent raft recruitment, sustained TCR protein tyrosine phosphorylation, and IL-2 production. However, TCR-induced apoptosis, shown only to require "partial" TCR signals, is unaffected by expression of kinase-active/SH3-impaired Lck mutants. Therefore, two distinctly regulated raft reorganization events are required for processive and sustained "complete" TCR signal transduction and T cell activation. Together with recent characterization of CD28 and CD48 costimulatory activities, these findings provide a molecular framework for two signal models of T cell activation.  相似文献   

10.
The Src family tyrosine kinase Lck is essential for T cell development and T cell receptor (TCR) signaling. Lck is post-translationally fatty acylated at its N-terminus conferring membrane targeting and concentration in plasma membrane lipid rafts, which are lipid-based organisational platforms. Confocal fluorescence microscopy shows that Lck colocalizes in rafts with GPI-linked proteins, the adaptor protein LAT and Ras, but not with non-raft membrane proteins including the protein tyrosine phosphatase CD45. The TCR also associates with lipid rafts and its cross-linking causes coaggregation of raft-associated proteins including Lck, but not of CD45. Cross-linking of either the TCR or rafts strongly induces specific tyrosine phosphorylation of the TCR in the rafts. Remarkably, raft patching alone induces signalling events analogous to TCR stimulation, with the same dependence on expression of key TCR signalling molecules. Our results indicate a mechanism whereby TCR engagement promotes aggregation of lipid rafts, which facilitates colocalization of signaling proteins including Lck, LAT, and the TCR, while excluding CD45, thereby potentiating protein tyrosine phosphorylation and downstream signaling. We are currently testing this hypothesis as well as using imaging techniques such as fluorescence resonance energy transfer (FRET) microscopy to study the dynamics of proteins and lipids in lipid rafts in living cells undergoing signaling events. Recent data show that the key phosphoinositide PI(4,5)P2 is concentrated in T cell lipid rafts and that on stimulation of the cells it is rapidly converted to PI(3,4,5)P3 and diacylglycerol within rafts. Thus rafts are hotspots for both protein and lipid signalling pathways.  相似文献   

11.
B and T lymphocyte attenuator (BTLA) is an important negative regulator of T-cell activation. T-cell activation involves partitioning of receptors into discrete membrane compartments known as lipid rafts and the formation of an immunological synapse (IS) between the T cell and antigen-presenting cell (APC). Here we show that after T-cell stimulation, BTLA co-clusters with the CD3zeta and is then involved in IS, as determined by a two-photon microscope. BTLA can interact with the phosphorylated form of T-cell receptor (TCR) within the lipid raft, which is associated with the T-cell signaling complex. Coligation of BTLA with the TCR significantly decreased the amount of phosphorylated TCR-related signal accumulation in the lipid raft during T-cell activation. These results suggest that BTLA functions to regulate T-cell signaling by controlling the phosphorylated form of TCRzeta accumulation in the lipid raft.  相似文献   

12.
Formation of the immunological synapse (IS) in T cells involves large scale molecular movements that are mediated, at least in part, by reorganization of the actin cytoskeleton. Various signaling proteins accumulate at the IS and are localized in specialized membrane microdomains, known as lipid rafts. We have shown previously that lipid rafts cluster and localize at the IS in antigen-stimulated T cells. Here, we provide evidence that lipid raft polarization to the IS depends on an intracellular pathway that involves Vav1, Rac, and actin cytoskeleton reorganization. Thus, lipid rafts did not translocate to the IS in Vav1-deficient (Vav1-/-) T cells upon antigen stimulation. Similarly, T cell receptor transgenic Jurkat T cells also failed to translocate lipid rafts to the IS when transfected with dominant negative Vav1 mutants. Raft polarization induced by membrane-bound cholera toxin cross-linking was also abolished in Jurkat T cells expressing dominant negative Vav1 or Rac mutants and in cells treated with inhibitors of actin polymerization. However, Vav overexpression that induced F-actin polymerization failed to induce lipid rafts clustering. Therefore, Vav is necessary, but not sufficient, to regulate lipid rafts clustering and polarization at the IS, suggesting that additional signals are required.  相似文献   

13.
Although the accumulation of lipid rafts at the immunological synapse is now well accepted, the degree of the accumulation, the localization within the fine structure of the immunological synapse, and the region from which lipid rafts are recruited have not been defined. In this work we show that lipid rafts preferentially accumulate in the central zone of the immunological synapse, the central supramolecular activation complex (C-SMAC). However, quantitative analyses indicate that the level of recruitment of lipid rafts to the C-SMAC is relatively small and suggests that rearrangement of lipid rafts from the peripheral zone of the synapse into the C-SMAC can account for this accumulation. We also assessed the effects of CD28 deficiency on lipid raft recruitment to the immunological synapse. The accumulation of lipid occurred independently of the CD28/B7 system and was not measurably altered by CD28.  相似文献   

14.
In resting T cells, Csk is constitutively localized in lipid rafts by virtue of interaction with a phosphorylated adaptor protein, Csk-binding protein (Cbp)/phosphoprotein associated with glycolipid-enriched microdomains, and sets an activation threshold in TCR signaling. In this study, we examined a kinase responsible for Cbp phosphorylation in T cell membrane rafts. By analyzing T cells from Fyn-/- mice, we clearly demonstrated that Fyn, but not Lck, has its kinase activity in membrane rafts, and plays a critical role in Cbp phosphorylation, Cbp-Csk interaction, and Csk kinase activity. Naive CD44(low)CD62 ligand(high) T cells were substantially reduced in Fyn-/- mice, presumably due to the inhibition of Cbp phosphorylation. Thus, Fyn mediates Cbp-Csk interaction and recruits Csk to rafts by phosphorylating Cbp. Csk recruited to rafts would then be activated and inhibit the kinase activity of Lck to keep resting T cells in a quiescent state. Our results elucidate a negative regulatory role for Fyn in proximal TCR signaling in lipid rafts.  相似文献   

15.
Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.  相似文献   

16.
Loss of tolerance to self-Ags in patients with systemic lupus erythematosus (SLE), a prototypic autoimmune disease, is associated with dysregulation of T cell signaling, including the depletion of total levels of lymphocyte-specific protein kinase (Lck) from sphingolipid-cholesterol-enriched membrane microdomains (lipid rafts). Inhibitors of 3-hyroxy-3-methylgluteryl CoA reductase (statins) can modify the composition of lipid rafts, resulting in alteration of T cell signaling. In this study, we show that atorvastatin targets the distribution of signaling molecules in T cells from SLE patients, by disrupting the colocalization of total Lck and CD45 within lipid rafts, leading to a reduction in the active form of Lck. Upon T cell activation using anti-CD3/anti-CD28 in vitro, the rapid recruitment of total Lck to the immunological synapse was inhibited by atorvastatin, whereas ERK phosphorylation, which is decreased in SLE T cells, was reconstituted. Furthermore, atorvastatin reduced the production of IL-10 and IL-6 by T cells, implicated in the pathogenesis of SLE. Thus, atorvastatin reversed many of the signaling defects characteristic of SLE T cells. These findings demonstrate the potential for atorvastatin to target lipid raft-associated signaling abnormalities in autoreactive T cells and provide a rationale for its use in therapy of autoimmune disease.  相似文献   

17.
Understanding the molecular mechanisms underlying dysregulated immune responses in human immunodeficiency virus type 1 (HIV-1) infection is crucial for the control of HIV/AIDS. Despite the postulate that HIV envelope glycoprotein gp120-CD4 interactions lead to impaired T-cell responses, the precise mechanisms underlying such association are not clear. To address this, we analyzed Lck and F-actin redistribution into the immunological synapse in stimulated human primary CD4+ T cells from HIV-1-infected donors. Similar experiments were performed with CD4+ T cells from HIV-uninfected donors, which were exposed to anti-CD4 domain 1 antibodies, as an in vitro model of gp120-CD4 interactions, or aldithriol-inactivated HIV-1 virions before stimulation. CD4+ T cells from HIV-infected patients exhibited a two- to threefold inhibition of both Lck and F-actin recruitment into the synapse, compared to cells from uninfected donors. Interestingly, defective recruitment of Lck was ameliorated following suppressive highly active antiretroviral therapy. Engagement of the CD4 receptor on T cells from HIV-uninfected donors before anti-CD3/CD28 stimulation led to similar defects. Furthermore, the redistribution of Lck into lipid rafts was abrogated by CD4 preengagement. Our results suggest that the engagement of CD4 by HIV gp120 prior to T-cell receptor stimulation leads to dysregulation of early signaling events and could consequently play an important role in impaired CD4+ T-cell function.  相似文献   

18.
For many types of cells, an increase in cell density leads to characteristic changes in intracellular signalling and cell function. It is unknown, however, whether cell density affects the function of T lymphocytes. It is presented here that aggregation of Jurkat T cells, murine thymocytes or human peripheral blood T cells, results in gradual modification of the Lck tyrosine kinase. Within one hour of aggregation, Lck in the detergent-insoluble lipid raft fraction is dephosphorylated mainly at the carboxy-terminal tyrosine. Further aggregation leads to gradual loss of Lck protein from both lipid raft and non-raft fractions which is accompanied by increased protein ubiquitination, a process that is more evident in the detergent-soluble fraction. In contrast, the expression of LAT, which like Lck distributes to raft and non-raft membrane, or Csk, a kinase with a structure similar to Lck, is not affected by cell aggregation. Dephosphorylation of lipid raft-associated Lck, albeit with reduced kinetics, is observed in aggregated Jurkat CD45-deficient cells as well, suggesting involvement of additional tyrosine phosphatases. Changes in Lck structure and expression correlate with reduced ability of aggregated cells to fully activate protein tyrosine phosphorylation after stimulation of the TCR, and with changes in the activation of down-stream signalling cascades.  相似文献   

19.
For many types of cells, an increase in cell density leads to characteristic changes in intracellular signalling and cell function. It is unknown, however, whether cell density affects the function of T lymphocytes. It is presented here that aggregation of Jurkat T cells, murine thymocytes or human peripheral blood T cells, results in gradual modification of the Lck tyrosine kinase. Within one hour of aggregation, Lck in the detergent-insoluble lipid raft fraction is dephosphorylated mainly at the carboxy-terminal tyrosine. Further aggregation leads to gradual loss of Lck protein from both lipid raft and non-raft fractions which is accompanied by increased protein ubiquitination, a process that is more evident in the detergent-soluble fraction. In contrast, the expression of LAT, which like Lck distributes to raft and non-raft membrane, or Csk, a kinase with a structure similar to Lck, is not affected by cell aggregation. Dephosphorylation of lipid raft-associated Lck, albeit with reduced kinetics, is observed in aggregated Jurkat CD45-deficient cells as well, suggesting involvement of additional tyrosine phosphatases. Changes in Lck structure and expression correlate with reduced ability of aggregated cells to fully activate protein tyrosine phosphorylation after stimulation of the TCR, and with changes in the activation of down-stream signalling cascades.  相似文献   

20.
The molecular events and the protein components that are involved in signalling by the T cell receptor (TCR) for antigen have been extensively studied. Activation of signalling cascades following TCR stimulation depends on the phosphorylation of the receptor by the tyrosine kinase Lck, which localizes to the cytoplasmic face of the plasma membrane by virtue of its post-translational modification. However, the precise order of events during TCR phosphorylation at the plasma membrane, remains to be defined. A current theory that describes early signalling events incorporates the function of lipid rafts, microdomains at the plasma membrane with distinct lipid and protein composition. Lipid rafts have been implicated in diverse biological functions in mammalian cells. In T cells, molecules with a key role in TCR signalling, including Lck, localize to these domains. Importantly, mutant versions of these proteins which fail to localise to raft domains were unable to support signalling by the TCR. Biochemical studies using purified detergent-resistant membranes (DRM) and confocal microscopy have suggested that upon stimulation, the TCR and Lck-containing lipid rafts may come into proximity allowing phosphorylation of the receptor. Further, there are data suggesting that phosphorylation of the TCR could depend on a transient increase in Lck activity that takes place within lipid rafts to initiate signalling. Current results and a model of how lipid rafts may regulate TCR signalling are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号