首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid transport in Madin-Darby canine kidney (MDCK) cells, grown in a defined medium, was investigated as a function of cell density, exposure to specific growth factors, and transformation. MDCK cells were found to transport neutral amino acids by systems similar to the A, ASC, L, and N systems which have been characterized using other cell lines. Experimental conditions were developed for MDCK cells which allowed independent measurement of A, ASC, and L transport activities. The activity of the L system was measured as Na+-independent leucine or methionine uptake at pH 7.4. The activity of the A system was measured as Na+-dependent α(methylamino)isobutyric acid (mAIB) uptake at pH 7.4, the activity of the ASC system was measured as Na+-dependent alanine uptake in the presence of 0.1 mM mAIB at pH 6.0, and the activity of system N was observed by measuring Na+-dependent glutamine uptake at pH 7.4 in the presence of high concentrations of A and ASC system substrates. The L transport system responded minimally to changes in growth state, but Na+-dependent amino add transport responded to regulation by growth factors, cell density, and transformation. The activities of the A and ASC systems both decreased at high cell density, but these activities responded dissimilarly under other conditions. The activity of the A system was stimulated by insulin, was inhibited by PGE1, and was elevated 3–7 fold in the transformed cell line, MDCK-T1. The activity of the ASC system was slightly stimulated by insulin and by PGE1, but was unchanged after chemical transformation. Changes in cellular growth were monitored and were found to correlate best with the activity of the A system. These results suggested that MDCK cell growth may be more closely related to the activity of the A than of the ASC system.  相似文献   

2.
Enhanced amino acid transport is observed when quiescent cultures of chicken embryo fibroblasts are stimulated to proliferate by the addition of purified multiplication-stimulating activity (MSA). This increase in amino acid transport is an early event occuring prior to the onset of DNA synthesis in stimulated cells. Results indicate that the changes in transport activity, as measured by α-aminoisobutyric acid (AIB) uptake, are due to stimulation of only the Na+-dependent A transport system. There is little or no change in the activities of transport systems ASC, L, or Ly+ upon exposure to MSA. A kinetic analysis shows this increased activity is due to a change in Vmax while Km remains unaltered. Continuous exposure to the stimulus is required to maintain the increased level of transport activity and the presence of inhibitors of RNA and protein synthesis significantly inhibits the response. Results also indicate that a similar specific increase in the A transport system is initiated when RSV tsNY68 infected cells are shifted to the permissive temperature. It appears that the A system of mediation is emerging as a strategic regulatory site for cell function.  相似文献   

3.
The effects of amiloride on Na+ ion influx, amino acid transport, protein synthesis and RNA synthesis have been studied in isolated rat hepatocytes. The initial rate of 22Na+ uptake and the amount of 22Na+ taken up at later time points were decreased in hepatocytes incubated in the presence of amiloride. Amiloride inhibited by about 25% the influx of α-methylamino[1?14C]isobutyric acid, a specific substrate for the A (Alanine preferring) system of neutral amino acid transport. By contrast, the activity of system L (Leucine preferring) was not affected by amiloride. Rates of protein synthesis were determined by using high extracellular concentrations of [14C]valine in order to maintain a constant amino acid precursor pool. Amiloride inhibited protein synthesis by 85% and had no effect on RNA synthesis. Half-maximal inhibition of protein synthesis occurred with amiloride at about 150 μM. In the absence of Na+ in the incubation medium, the rate of protein synthesis was reduced by about 35% and no further inhibition was observed with amiloride. These results suggest that in isolated rat hepatocytes protein synthesis is partially dependent on Na+, and that amiloride is an efficient inhibitor of protein synthesis.  相似文献   

4.
The active transport and intracellular accumulation of HCO3 by air-grown cells of the cyanobacterium Synechococcus UTEX 625 (PCC 6301) was strongly promoted by 25 millimolar Na+.Na+-dependent HCO3 accumulation also resulted in a characteristic enhancement in the rate of photosynthetic O2 evolution and CO2 fixation. However, when Synechococcus was grown in standing culture, high rates of HCO3 transport and photosynthesis were observed in the absence of added Na+. The internal HCO3 pool reached levels up to 50 millimolar, and an accumulation ratio as high as 970 was observed. Sodium enhanced HCO3 transport and accumulation in standing culture cells by about 25 to 30% compared with the five- to eightfold enhancement observed with air-grown cells. The ability of standing culture cells to utilize HCO3 from the medium in the absence of Na+ was lost within 16 hours after transfer to air-grown culture and was reacquired during subsequent growth in standing culture. Studies using a mass spectrometer indicated that standing culture cells were also capable of active CO2 transport involving a high-affinity transport system which was reversibly inhibited by H2S, as in the case for air-grown cells. The data are interpreted to indicate that Synechococcus possesses a constitutive CO2 transport system, whereas Na+-dependent and Na+-independent HCO3 transport are inducible, depending upon the conditions of growth. Intracellular accumulation of HCO3 was always accompanied by a quenching of chlorophyll a fluorescence which was independent of CO2 fixation. The extent of fluorescence quenching was highly dependent upon the size of the internal pool of HCO3 + CO2. The pattern of fluorescence quenching observed in response to added HCO3 and Na+ in air-grown and standing culture cells was highly characteristic for Na+-dependent and Na+-independent HCO3 accumulation. It was concluded that measurements of fluorescence quenching provide an indirect means for following HCO3 transport and the dynamics of intracellular HCO3 accumulation and dissipation.  相似文献   

5.
The effect of sodium periodate on the ability of pig spleen lymphocytes to transport the nonmetabolizable amino acid, α-aminoisobutyric acid, was studied. NaIO4-treated cells exhibited a lowered rate of uptake of α-aminoisobutyric acid in contrast to phytohemagglutinin- and concanavalin A-treated cells. However, when periodate-treated cells were preincubated with untreated cells for 2 h, the mixed cells exhibited twofold stimulation in the uptake of α-aminoisobutyric acid as compared to untreated cells. The increased uptake of α-aminoisobutyric acid in mixed cells was due to a change in the V but not in the Km. The observed increased uptake of α-aminoisobutyric acid in mixed cells was inhibited (24%) by ouabain, although the level of uptake in untreated and NaIO4-treated cells was not affected. Na+,K+-ATPase activity in mixed cells, which was ouabain sensitive, was stimulated 56%. Studies also showed that there was a decrease in the fluorescence polarization (P value) of diphenyl hexatriene in mixed cells (P = 0.21) as compared to untreated cells (P = 0.24). These results demonstrate that NaIO4 treatment induces a change in the lymphocyte cell membrane and transport of α-aminoisobutyric acid. Incubation of NaIO4-treated cells with untreated cells is required for the stimulatory effect in the uptake of α-aminoisobutyric acid, and the stimulation appears to be due to changes in Na+,K+-ATPase activity and membrane fluidity.  相似文献   

6.
Ascorbic acid (AA) is an essential cofactor for osteoblast differentiation both in vivo and in vitro. Before it can function, this vitamin must be transported into cells via a specific Na+-dependent AA transporter. In this study, we examine the regulation of this transport activity by glucocorticoids, a class of steroid hormones known to stimulate in vitro osteoblast differentiation. Dexamethasone stimulated Na+-dependent AA transport activity approximately twofold in primary rat calvarial osteoblasts. Effects of hormone on ascorbic acid transport were rapid (detected within 24 h) and were maximally stimulated by 25–50 nM dexamethasone. Similar effects of dexamethasone on transport activity were also observed in murine MC3T3-E1 cells. This preosteoblast cell line was used for a more detailed characterization of the glucocorticoid response. Transport activity was stimulated selectively by glucocorticoids (dexamethasone > corticosterone) relative to other steroid hormones (progesterone and 17-β-estradiol) and was blocked when cells were cultured in the presence of cycloheximide, a protein synthesis inhibitor. Kinetic analysis of AA transporter activity in control and dexamethasone-treated cells indicated a Km of approximately 17 μM for both groups. In contrast, dexamethasone increased Vmax by approximately 2.5-fold. Cells also contained an Na+-independent glucose transport activity that has been reported in other systems to transport vitamin C as oxidized dehydroascorbic acid. In marked contrast to Na+-dependent AA transport, this activity was inhibited by dexamethasone. Thus, glucocorticoids increase Na+-dependent AA transport in osteoblasts, possibly via up-regulation of transporter synthesis, and this response can be resolved from actions of glucocorticoids on glucose transport. J. Cell. Physiol. 176:85–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The unidirectional influx of methionine into the brush border epithelium of chicken jejunum has been studied. Tissues leached of Na+ transport methionine from a medium devoid of Na+ with reduced apparent affinity (Kt) and maximal flux (Jmax). Addition of Na+ to the medium during a 1-min incubation with substrate, or during a 30-min preincubation, restored Kt but affected Jmax slightly. Theophylline was found to maintain Jmax in the absence of Na+. Essentially complete restoration of Kt and Jmax could be attained when theophylline-treated tissue was exposed to Na+ for 30 min. Influx from a Na+ medium was unaffected by theophylline pretreatment in Na+-containing buffer. Kt was increased without an effet upon Jmax when influx was studied from choline medium following preincubation in Na+.Modifiers of tissue cyclic AMP levels were investigated in conjunction with theophylline. Histamine and carbachol were found to inhibit theophylline-stimulated transport. Secretin was found to stimulate influx in Na+-leached tissue, but did not potentiate the theophylline effect. Amino acids in the incubation medium inhibited theophylline-stimulated influx, whereas preloaded lysine or methionine had no effect.The results are interpreted in terms of a model which envisions roles for cellular and external Na+ and for cyclic AMP in the activation and regulation of amino acid transport in intestine.  相似文献   

8.
The rat osteosarcoma cell line UMR-106–01 has an osteoblast-like phenotype. When grown in monolyer culture these cells transport inroganic phosphate and L-alanine via Na+-dependent transport systems. Exposure of these cells to a low phosphate medium for 4 h produced a 60–70 per cent increase in Na+-dependent phosphate uptake compared to control cells maintained in medium with a normal phosphate concentration. In contrast, Na+-dependent alanine uptake and Na+-independent phosphate uptake were not changed during phosphate deprivation. The increased phosphate uptake was due, in part, to an increased Vmax and was blocked completely by pretreatment with cycloheximide (70 μM). In these cells recovery of intracellular pH after acidification with NH4Cl is due primarily to the Na+/H+ exchange system. The rate of this recovery process, monitored with a pH sensitive indicator (BCECF), was decreased by more than 50 per cent in phosphate-deprived cells compared to controls indicating that Na+/H+ exchange was inhibited during phosphate deprivation.  相似文献   

9.
Membrane transport carrier function, its regulation and coupling to metabolism, can be selectively investigated dissociated from metabolism and in the presence of a defined electrochemical ion gradient driving force, using the single internal compartment system provided by vesiculated surface membranes. Vesicles isolated from nontransformed and Simian virus 40-transformed mouse fibroblast cultures catalyzed carrier-mediated transport of several neutral amino acids into an osmotically-sensitive intravesicular space without detectable metabolic conversion of substrate. When a Na+ gradient, external Na+ > internal Na+, was artifically imposed across vesicle membranes, accumulation of several neutral amino acids achieved apparent intravesicular concentrations 6- to 9-fold above their external concentrations. Na+-stimulated alanine transport activity accompanied plasma membrane material during subcellular fractionation procedures. Competitive interactions among several neutral amino acids for Na+-stimulated transport into vesicles and inactivation studies indicated that at least 3 separate transport systems with specificity properties previously defined for neutral amino acid transport in Ehrlich ascites cells were functional in vesicles from mouse fibroblasts: the A system, the L system and a glycine transport system. The pH profiles and apparent Km values for alanine and 2-aminoisobutyric acid transport into vesicles were those expected of components of the corresponding cellular uptake system. Several observations indicated that both a Na+ chemical concentration gradient and an electrical membrane potential contribute to the total driving force for active amino acid transport via the A system and the glycine system. Both the initial rate and quasi-steady-state of accumulation were stimulated as a function of increasing concentrations of Na+ applied as a gradient (external > internal) across the membrane. This stimulation was independent of endogenous Na+, K+-ATPase activity in vesicles and was diminished by monensin or by preincubation of vesicles with Na+. The apparent Km for transport of alanine and 2-aminoisobutyric acid was decreased as a function of Na+ concentration. Similarly, in the presence of a standard initial Na+ gradient, quasi-steady-state alanine accumulation in vesicles increased as a function of increasing magnitudes of interior-negative membrane potential imposed across the membrane by means of K+ diffusion potentials (internal > external) in the presence of valinomycin; the magnitude of this electrical component was estimated by the apparent distributions of the freely permeant lipophilic cation triphenylme thylphosphonium ion. Alanine transport stimulation by charge asymmetry required Na+ and was blocked by the further addition of either nigericin or external K+. As a corollary, Na+-stimulated alanine transport was associated with an apparent depolarization, detectable as an increased labeled thiocyanate accumulation. Permeant anions stimulated Na+-coupled active transport of these amino acids but did not affect Na+-independent transport. Translocation of K+, H+, or anions did not appear to be directly involved in this transport mechanism. These characteristics support an electrogenic mechanism in which amino acid translocation is coupled t o an electrochemical Na+ gradient by formation of a positively charged complex, stoichiometry unspecified, of Na+, amino acid, and membrane component. Functional changes expressed in isolated membranes were observed t o accompany a change in cellular proliferative state or viral transformation. Vesicles from Simian virus 40-transformed cells exhibited an increased Vmax of Na+-stimulated 2-aminoisobutyric acid transport, as well as an increased capacity for steady-state accumulation of amino acids in response t o a standard Na+ gradient, relative t o vesicles from nontransformed cells. Density-inhibition of nontransformed cells was associated with a marked decrease in these parameters assayed in vesicles. Several possibilities for regulatory interactions involving gradient-coupled transport systems are discussed.  相似文献   

10.
The energetics of α-aminoisobutyric acid transport were examined in Vibrio costicola grown in a medium containing the NaCl content (1 M) optimal for growth. Respiration rate, the membrane potential (Δψ) and α-aminoisobutyric acid transport had similar pH profiles, with optima at 8.5–9.0. Cells specifically required Na+ ions to transport α-aminoisobutyric acid and to maintain the highest Δψ (150–160 mV). Sodium was not required to sustain high rates of O2-uptake. Δψ (and α-aminoisobutyric acid transport) recovered fully upon addition of Na+ to Na+-deficient cells, showing that Na+ is required in formation or maintenance of the transmembrane gradients of ions. Inhibitions by protonophores, monensin, nigericin and respiratory inhibitors revealed a close correlation between the magnitudes of Δψ and α-aminoisobutyric acid transport. Also, dissipation of Δψ with triphenylmethylphosphonium cation abolished α-aminoisobutyric acid transport without affecting respiration greatly. On the other hand, alcohols which stimulated respiration showed corresponding increases in α-aminoisobutyric acid transport, without affecting Δψ. Similarly, N,N′-dicyclohexylcarbodiimide (10 μM) stimulated respiration and α-aminoisobutyric acid transport and did not affect Δψ, but caused a dramatic decline in intracellular ATP content. From these, and results obtained with artificially established energy sources (Δψ and Na+ chemical potential), we conclude that Δψ is obligatory for α-aminoisobutyric acid transport, and that for maximum rates of transport an Na+ gradient is also required.  相似文献   

11.
The transport of selected neutral and cationic amino acids has been studied in Balb/c 3T3, SV3T3, and SV3T3 revertant cell lines. After properly timed preincubations to control the size of internal amino acid pools, the activity of systems A, ASC, L, and Ly+ has been discriminated by measurements of amino acid uptake (initial entry rate) in the presence and absence of sodium and of transportspecific model substrates. L-Proline, 2-aminoisobutyric acid, and glycine were primarily taken up by system A; L-alanine and L-serine by system ASC; L-phenylalanine by system L; and L-lysine by system Ly+ in SV3T3 cells. L-Proline and L-serine were also preferential substrates of systems A and ASC, respectively, in 3T3 and SV3T3 revertant cells. Transport activity of the Na+-dependent systems A and ASC decreased markedly with the increase of cell density, whereas the activity of the Na+-independent systems L and Ly+remained substantially unchanged. The density-dependent change in activity of system A occurred through a mechanism affecting transport maximum (Vmax) rather than substrate concentration for half-maximal velocity (Km). Transport activity of systems A and ASC was severalfold higher in transformed SV3T3 cells than in 3T3 parental cells at all the culture densities that could be compared. In SV3T3 revertant cells, transport activity by these systems remained substantially similar to that observed in transformed SV3T3 cells. The results presented here add cell density as a regulatory factor of the activity of systems A and ASC, and show that this control mechanism of amino acid transport is maintained in SV40 virus-transformed 3T3 cells that have lost density-dependent inhibition of growth, as well as in SV3T3 revertant cells that have resumed it.  相似文献   

12.
The uptake of glycine in rabbit renal brush border membrane vesicles was shown to consist of glycine transport into an intravesicular space. An Na+ electrochemical gradient (extravesicular>intravesicular) stimulated the initial rate of glycine uptake and effected a transient accumulation of intravesicular glycine above the steady-state value. This stimulation could not be induced by the imposition of a K+, Li+ or choline+ gradient and was enhanced as extravesicular Na+ was increased from 10 mM to 100 mM. Dissipation of the Na+ gradient by the ionophore gramicidin D resulted in diminished Na+-stimulated glycine uptake. Na+-stimulated uptake of glycine was electrogenic. Substrate-velocity analysis of Na+-dependent glycine uptake over the range of amino acid concentrations from 25 μM to 10 mM demonstrated a single saturable transport system with apparent Km = 996 μM and Vmax = 348 pmol glycine/mg protein per min. Inhibition observed when the Na+-dependent uptake of 25 μM glycine was inhibited by 5 mM extravesicular test amino acid segregated dibasic amino acids, which did not inhibit glycine uptake, from all other amino acid groups. The amino acids d-alanine, d-glutamic acid, and d-proline inhibited similarly to their l counterparts. Accelerative exchange of extravesicular [3H]glycine was demonstrated when brush border vesicles were preloaded with glycine, but not when they were preloaded with l-alanine, l-glutamic acid, or with l-proline. It is concluded that a single transport system exists at the level of the rabbit renal brush border membrane that functions to reabsorb glycine independently from other groups of amino acids.  相似文献   

13.
A Na+-specific and Na+-stimulated active α-aminoisobutyric acid transport system was reconstituted from plasma membranes isolated from mouse fibroblast BALB/c 3T3 cells transformed by simian virus 40. The plasma membranes were treated with dimethylmaleic anhydride and then extracted with 2% cholate. The cholate-solubilized supernatant proteins were combined with exogenous phospholipids and eluted through a Sephadex G-50 column. This yielded reconstituted vesicles which in the presence of Na+ could actively transport α-aminoisobutyric acid as shown by the transient accumulation above the equilibrium level (overshoot). The overshoot was not obtained with other monovalent cations such as K+, Li+, and choline+. The electrochemical effect of the lipophilic anion, SCN?, led to greater α-aminoisobutyric acid uptake as compared to that observed with Cl? or SO42?. The Na+-stimulated transport of a-aminoisobutyric acid was a saturable process with an apparent Km of 2 mm. Studies of the inhibition of α-aminoisobutyric acid transport by other amino acids showed that methylaminoisobutyric acid [specifically transported by A system (alanine preferring)]had a pronounced inhibitory effect on a-aminoisobutyric acid uptake in contrast to the slight inhibitory effect produced by phenylalanine [primarily transported by L system (leucine preferring)]. The results show that the reconstituted vesicles, prepared from partially purified membrane proteins and exogenous phospholipids, regained the same important transport properties of native membrane vesicles, i.e., Na+-specific and Na+-stimulated concentrative α-aminoisobutyric acid uptake.  相似文献   

14.
Developmental changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Well-defined changes over an age continuum could be observed in both the rates of amino acid accumulation and the effects of Na+ on the accumulation. The uptakes of five amino acids (threonine, serine and valine in Na+-free medium, aspartic acid and proline in Na+-containing medium) increased progressively with the age of the animal, whereas the uptakes of leucine and arginine (in Na+-free medium) decreased steadily. The uptake of serine or threonine by synaptosomal fractions prepared from newborn rats was markedly dependent on the presence of Na+in the incubation media. Na+exerted progressively less effect on the accumulation process with continuing postnatal development and to some extent inhibited uptake by fractions obtained from rats older than about 15 days. Na+significantly enhanced the accumulation of glycine in fractions from newborn and adult rats, but had only a slight effect in fractions prepared from 12 to 17-day old rats. A detailed study of the accumulation of glycine indicated that the synaptosomal transport of this amino acid proceeded by two independent systems, one of which was totally dependent on external Na+and the and adult animals than in fractions from 12 to 17-day-old rats, wheras the Na+-independent system was most active during this latter period of development. The decline in the Na+-independent accumulation of glycine from about the 15th day to adulthood was characterized by a decrease in the Vmax. and an increase in the Km.  相似文献   

15.
The transport of L-methionine in human diploid fibroblast strain WI38 was investigated. The uptake of l-methionine was measured in sparse cell cultures in a simple balanced salt solution buffered with either Tris·HCl of N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES). Similar results were obtained with these two buffers. Cultures were allowed to equilibrate with the buffered saline before transport was measured. The presence of glucose in the buffered saline results in a slight reduction in the initial rate of transport for the first 2 h of equilibration in part buffered saline. l-Methionine is actively transported in WI38 by saturable, chemically specific mechanisms which are temperature, pH and, in part, Na+ dependent, and are reactive with both l- and d-stereoisomers. Kinetic analysis of initial rates of transport at substrate concentrations from 0.0005 to 100 mM indicated the presence of two saturable transport systems. System 1 has an apparent KM of 21.7 μM and an apparent V of 3.57 nmol/mg per min. System 2 has an apparent KM of 547 μM and an apparent V of 22.6 nmol/mg per min. Kinetic analysis of initial rates of transport in Na+- free media or after treatment with ouabain suggested that system 1 is Na+ independent and that system 2 is Na+ dependent. Preloading of cells with unlabeled l-methionine greatly increases the initial rate of uptake. Efflux of transported methionine is temperature dependent, and is greatly increased in the presence of unlabeled l- or d-methionine or l-phenylalanine, but not in the presence of l-arginine. l-Methionine transport is strongly inhibited by other neutral amino acids, and is very weakly inhibited by dibasic amino acids, dicarboxylic amino acids, proline or glycine.  相似文献   

16.
17.
Effects of long-term, subtotal inhibition of Na+-K+ transport, either by growth of cells in sublethal concentrations of ouabain or in low-K+ medium, are described for HeLa cells. After prolonged growth in 2 × 10?8 M ouabain, the total number of ouabain molecules bound per cell increases by as much as a factor of three, mostly due to internalization of the drug. There is only about a 20% increase in ouabain-binding sites on the plasma membrane, representing amodest induction of Na+, K+-ATPase. In contrast, after long-term growth in low K+ there can be a twofold or greater increase in ouabain binding per cell, and in this case the additional sites are located in the plasma membrane. The increase is reversible. To assess the corresponding transport changes, we have separately estimated the contributions of increased intracellular [Na+] and of transport capacity (number of transport sites) to transport regulation. During both induction and reversal, short-term regulation is achieved primarily by changes in [Na+]i. More slowly, long-term regulation is achieved by changes in the number of functional transporters in the plasma membrane as assessed by ouabain binding, Vmax for transport, and specific phosphorylation. Parallel exposure of cryptic Na+, K+-ATPase activity with sodium dodecyl sulfate in the plasma membranes of both induced and control cells showed that the induction cannot be accounted for by an exposure of preexisting Na+, K+-ATPase in the plasma membrane. Analysis of the kinetics of reversal indicates that it may be due to a post-translational event.  相似文献   

18.
Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na+, K+, and H+ on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na+ dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na+/GABA symporter energized by Na+‐exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway.  相似文献   

19.
Uptake of methionine, α-aminoisobutyric acid, and α-(methyl-amino)-isobutyric acid has been shown to occur by at least two transport systems, one sensitive and the other insensitive to the Na+ concentration. For α-aminoisobutyric acid and its N-methyl derivative, the Na+-insensitive uptake is not concentrative and its rate increases almost linearly with concentration within the range examined. In contrast, the Na+-insensitive uptake of methionine is concentrative and subject to inhibition by such amino acids as phenylalanine, leucine, and valine, although not in a manner to indicate that the uptake is mediated by a single agency. This component is not produced by a residual operation of the Na+-requiring transport system, handicapped by the absence of Na+ or by its having combined with α-aminoisobutyric acid. The increase in the rate of methionine uptake is linear with concentration only above about 16 mM methionine. The Na+-sensitive uptakes of methionine, α-aminoisobutyric, and α-(methylamino)-isobutyric acid appear to occur by the same population of transport-mediating sites. Both Km and V max of the Na+-sensitive uptake of these three amino acids change with changes in the concentration of Na+, an effect which is shown to have a theoretical basis. A similarity in the values of Vmax for ten amino acids entering principally by the Na+-sensitive agency indicates that differences in their Km values probably measure differences in their affinities for that transport-mediating system.  相似文献   

20.
A. A. Rubashkin 《Biophysics》2013,58(5):660-663
A theory of change of the ionic fluxes in the lymphoid cells in their transition from normal to apoptosis we have developed previously is applied to the analysis of Na+/Na+ exchange fluxes in human lymphoid cells U937 exposed to ouabain. We solve a system of equations describing changes in the intracellular concentrations of Na+, K+ and Cl?, membrane potential and cell volume. It is shown that the Na+ influx (I Na/Na) and output flux through the Na+/Na+ tract increased 4 times in 8 h after disconnecting Na+/K+-ATPase for normal cell U937. These fluxes increased 2.6 times for apoptotic cells. The value of I Na/Na after 8 h off pump by ouabain is 97% of the total Na+ input for both cell types. It is concluded that ouabain not only inhibits the Na+/K+-ATPase, but also increases Na+ exchange fluxes through the Na+/Na+ tract, thereby switching sodium transport across the membrane of lymphoid cells to Na+/Na+ equivalent exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号