首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five different fibroblast strains derived from donors of a wide range of ages were used for investigation of senescence-associated changes in the organization of intermediate filaments (IFs) and the activity of cell locomotion. Results of immunofluorescence microscopy demonstrate that, in large and flat in vitro aged fibroblasts, vimentin-containing IFs are distributed as unusually organized large bundles. Electron microscopic examination shows that these large bundles are indeed composed of filaments of 8-10 nm. Such a profile of large bundles is rarely seen in young fibroblasts whose IFs are usually interdispersed among microtubules. Within the large filament bundles of senescent fibroblasts, cross-bridge-like extensions are frequently observed along the individual IFs. Immunogold labeling with antibody to one of the cross-bridging proteins, p50, further illustrates the abundance of interfilament links within the IF bundles. The senescence-related increase in interfilament association was also supported by the results of co-precipitation between vimentin and an associated protein of 50,000 D. Time-lapse cinematographic studies of cell locomotion reveal that accompanying aging, fibroblasts have a significantly reduced ability to translocate across a solid substratum. These results led me to suggest that the increased interfilament links via cross-bridges may in part contribute to the mechanism that orchestrates the formation of large filament bundles. The presence of enormous bundles in the cytoplasm may physically impede the efficiency of locomotion for these nondividing cells.  相似文献   

2.
We have determined the structural organization and dynamic behavior of actin filaments in entire primary locomoting heart fibroblasts by S1 decoration, serial section EM, and photoactivation of fluorescence. As expected, actin filaments in the lamellipodium of these cells have uniform polarity with barbed ends facing forward. In the lamella, cell body, and tail there are two observable types of actin filament organization. A less abundant type is located on the inner surface of the plasma membrane and is composed of short, overlapping actin bundles (0.25–2.5 μm) that repeatedly alternate in polarity from uniform barbed ends forward to uniform pointed ends forward. This type of organization is similar to the organization we show for actin filament bundles (stress fibers) in nonlocomoting cells (PtK2 cells) and to the known organization of muscle sarcomeres. The more abundant type of actin filament organization in locomoting heart fibroblasts is mostly ventrally located and is composed of long, overlapping bundles (average 13 μm, but can reach up to about 30 μm) which span the length of the cell. This more abundant type has a novel graded polarity organization. In each actin bundle, polarity gradually changes along the length of the bundle. Actual actin filament polarity at any given point in the bundle is determined by position in the cell; the closer to the front of the cell the more barbed ends of actin filaments face forward.

By photoactivation marking in locomoting heart fibroblasts, as expected in the lamellipodium, actin filaments flow rearward with respect to substrate. In the lamella, all marked and observed actin filaments remain stationary with respect to substrate as the fibroblast locomotes. In the cell body of locomoting fibroblasts there are two dynamic populations of actin filaments: one remains stationary and the other moves forward with respect to substrate at the rate of the cell body.

This is the first time that the structural organization and dynamics of actin filaments have been determined in an entire locomoting cell. The organization, dynamics, and relative abundance of graded polarity actin filament bundles have important implications for the generation of motile force during primary heart fibroblast locomotion.

  相似文献   

3.
The cytoskeleton of senescent cells was systematically studied using senescent and young fibroblasts. In the cell senescence, skin fibroblasts extraordinarily produced vimentin in contrast to actin and tubulin, which were down-regulated. Among the focal adhesion proteins, paxillin and c-Src decreased also. Senescent cells developed a long and dense vimentin network, long and thin actin fibers, and numerous small focal contact sites, which contrasted with young cells with short and thick actin stress fibers and prominently large focal adhesions. Noticeably, senescent fibroblasts markedly produced p53 molecules and anchored them to vimentin-cytoskeleton in the cytoplasm. The vimentin-anchored p53 was detected with antibody PAb240 that specifically recognizes a conformation variant of p53. A GFP-tagged wild type p53 cDNA was expressed by transfection and shown also to be retained in the cytoplasm in senescent cells, suggesting that p53 is structurally modified to be recognized by PAb240 and anchored to vimentin filaments. We discuss the correlation of the marked alteration of cytoskeleton and senescent cells diminished proliferation and migration, as well as the significance of cytoskeletal anchorage of tumor suppressor p53.  相似文献   

4.
Small JV  Celis JE 《Cytobiologie》1978,16(2):308-325
Treatment of spread, cultured cells with Triton X-100 followed by negative staining reveals the organization of the unextracted intracellular filamentous elements: actin, microtubules and the 100 angstrom filaments. The present report describes the organization of the actin-like filaments in human skin fibroblasts and mouse 3 T 3 cells. As shown in earlier studies, the cytoplasmic stress fibres were seen to be composed of bundles of colinear actin-like filaments. In addition to these large stress fibres much smaller bundles of thin filaments as well as randomly oriented thin filaments were also observed. A thick bundle of thin filaments, 0.2 microm to 0.5 microm in diameter, was found to delimit the concave cell edges most prominent in well-spread stationary cells. The leading edge and ruffled border of human skin fibroblasts appeared as a broad web, of meshwork of diagonally oriented thin filaments interconnecting radiating, linear bundles of thin filaments about 0.1 microm in diameter. These bundles corresponding to the microspikes described earlier ranged from about 1.5 microm in length and were separated by 1 microm to 3 microm laterally. The leading edge of 3 T 3 cells showed a similar organization but with fewer radiating thin filament bundles. Both the filaments in the bundles and in the meshwork formed arrowhead complexes with smooth muscle myosin subfragment - 1 which were unipolar and directed towards the main body of the cell. The findings are discussed in relation to the mechanisms of non-muscle cell motility.  相似文献   

5.
Distribution of actin filaments of human epidermal keratinocyte in the primary culture was observed by immunofluorescence staining. In the cytoplasm, actin was distributed diffusely, and strong antiactin immunofluorescence was observed along the leading edge, showing ruffling and the contact zone to the neighboring cell. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced organization of actin filaments. Many short bundles of actin filaments appeared shortly after the addition of 16 nM TPA, and large actin-containing ribbons of crescent-shape, circular or gyrus-like form were sometimes observed. Phorbol-12-13-diacetate, a non-promoter phorbol ester, induced a similar change, but to a much lesser extent. Addition of 1 mM cycloheximide did not interfere with the organization of actin filaments by TPA. La3+ aborted it completely possibly by replacing Ca2+ at the binding site of the cell surface, and the cultivation in low Ca2+ environment suppressed the effect of TPA. These findings make a contrast to those reported in fibroblasts, and may be linked to the characteristic response of cultured human keratinocytes to TPA in the proliferation of cells and induction of ornithine decarboxylase.  相似文献   

6.
Tendon fibrocartilages appear in areas subjected to compressive forces. The bullfrog plantaris longus tendon was shown to be subjected to compression and to develop a modified region which differs from fibrocartilage in many respects. Ultrastructural analyses of the compression region of the bullfrog tendon demonstrated the existence of typical fibroblasts in the fibrous areas and large cells with abundant cytoplasm filled with intermediate type filaments. This large cell type has organelles restricted to a small perinuclear area or dispersed in the network of intermediate type filaments. Other cells were also found and exhibited less abundant deposition of intermediate filaments, showing an organization intermediate between fibroblasts and typical cells from the compression region. These intermediate type cells are closely associated with collagen bundles while the large cells seemed to have no connection with the fibrous components, but are immersed in a glycosaminoglycan-rich extracellular matrix. Aspects of cell death in association with extracellular matrix disruption were observed in some instances and it is likely that these are associated with traumatic stimulation of the tendon, especially when it is submitted to the sudden and strong mechanical loading expected to occur during jumping. Since the damage occurred mainly in cells of the intermediate type, it is assumed that accumulating intermediate type filaments is a protective mechanism against compressive forces to which this tendon is subjected.  相似文献   

7.
Tendon fibrocartilages appear in areas subjected to compressive forces. The bullfrog plantaris longus tendon was shown to be subjected to compression and to develop a modified region which differs from fibrocartilage in many respects. Ultrastructural analyses of the compression region of the bullfrog tendon demonstrated the existence of typical fibroblasts in the fibrous areas and large cells with abundant cytoplasm filled with intermediate type filaments. This large cell type has organelles restricted to a small perinuclear area or dispersed in the network of intermediate type filaments. Other cells were also found and exhibited less abundant deposition of intermediate filaments, showing an organization intermediate between fibroblasts and typical cells from the compression region. These intermediate type cells are closely associated with collagen bundles while the large cells seemed to have no connection with the fibrous components, but are immersed in a glycosaminoglycan-rich extracellular matrix. Aspects of cell death in association with extracellular matrix disruption were observed in some instances and it is likely that these are associated with traumatic stimulation of the tendon, especially when it is submitted to the sudden and strong mechanical loading expected to occur during jumping. Since the damage occurred mainly in cells of the intermediate type, it is assumed that accumulating intermediate type filaments is a protective mechanism against compressive forces to which this tendon is subjected.  相似文献   

8.
The organization of actin in mouse neuroblastoma and chicken dorsal root ganglion (DRG) nerve cells was investigated by means of a variety of electron microscope techniques. Microspikes of neuroblastoma cells contained bundles of 7- to 8-nm actin filaments which originated in the interior of the neurite. In the presence of high concentrations of Mg++ ion, filaments in these bundles became highly ordered to form paracrystals. Actin filaments, but not bundles, were observed in growth cones of DRG cells. Actin was localized in the cell body, neurites, and microspikes of both DRG and neuroblastoma nerve cells by fluorescein-labeled S1. Myosin was localized primarily in the neurites of chick DRG nerve cells with fluorescein-labeled anti-brain myosin antibody. This antibody also stained stress fibers in fibroblasts and myoblasts but did not stain muscle myofibrils.  相似文献   

9.
An in vitro system of isolated skin cells has been developed in order to address the understanding on the factors that control the shedding cycle and differentiation of lizard epidermis. The skin from the regenerating lizard tail has been separated in epidermis and dermis, cells have been dissociated, cultivated in vitro, and studied ultrastructurally after 1–30 days of culture condition. Dissociated keratinocytes after 12 days in culture show numerous cell elongations and contain bundles of keratin or sparse keratin filaments. These cells often contain one to three 0.5–3 μm large and dense “keratinaceous bodies”, an organelle representing tonofilament disassembling. Most keratinocytes have sparse tonofilaments in the cytoplasm and form shorter bundles of keratin in the cell periphery. The dissociated dermis mainly consists of mesenchymal cells containing sparse bundles of intermediate filaments. These cells proliferate and form multi-stratified layers and a dermal pellicle in about 2–3 weeks in vitro in our basic medium. Conversely, cultures of keratinocytes do not expand but eventually reduce to few viable cells within 2–3 weeks of in vitro condition. It is suggested that dermal cells sustain themselves through the production of growth factors but that epidermal cells requires specific growth factors still to be identified before setting-up an in vitro system that allows analyzing the control of the shedding cycle in lizards.  相似文献   

10.
The association between intermediate filaments (IF) and microtubules (MT) has been demonstrated by several experiments using MT inhibitors and by microinjecting specific antibodies. The actin cytoskeleton has recently been assigned a role in this process of drug induced IF collapse. However, this was not found to be true in large cells with irregular morphology. For instance, in early passage diploid fibroblasts of human origin and in armadillo cell lines, where the cells are large, irregular in shape and exhibit prominent stress fibers ( SF ), depolymerization of MT with nocodazole did not lead to collapse of IF . Instead, the IF formed bundles of coils that seemed to associate with the SF . Disintegration of the SF with cytochalasin B led to the collapse of the IF . It appears that the actin organization in such large cells with extensive SF , is not as contractile as in typical spindle shaped fibroblasts which have relatively less stable actin organization. The stable SF may actually prevent IF collapse.  相似文献   

11.
By use of a rapid technique, initial rates of D-glucose transport were obtained during the lifespan in vitro of a commercially available strain of human embryo lung fibroblasts (Flow 2000). The apparent Km of the D-glucose carrier did not change during senescence in vitro: x̄ = 1.8 mM (range 1.3–2.3) in phase II, x̄ = 1.8 mM (range 1.5–2.2) in phase III. Transport rates remained constant in stationary phase II cultures, which had completed between 30% and 80% of their replicative lifespan. A wide variation, however, was observed in terminally differentiated cells (phase III), which showed a two- to threefold increase in average cell size and protein content. In some senescent cultures, glucose transport calculated on a per cell basis was also two-to threefold increased, while it was strongly decreased (-75%) in others. When calculated per unit of cell water, protein, and surface area, respectively, transport rates in phase III cultures ranged from values established for stationary phase II cultures down to very low values. Detaching cells flushed off from senescent cultures did not show measurable rates of glucose transport into the inulin impermeable cell space. Present evidence argues against the idea that an impairment of D-glucose transport might precede loss of replicative potential in aging human fibroblasts. Instead our data indicate that the transport capacity of cell membrane finally decreases during postreplicative senescence in terminally differentiated cells.  相似文献   

12.
Normal human diploid fibroblasts exhibit a limited lifespan in vitro and are used as a model to study in vivo aging. Monoclonal antibodies were generated against partially purified surface membranes from human diploid fibroblasts at the end of their lifespan (senescent). Three hybridomas were isolated that secreted antibodies reacting to cellular determinants expressed specifically on senescent human fibroblasts of different origin, including neonatal foreskin, embryonic lung, and adult skin punch biopsy, but not expressed on matched young cells. The antibodies did not bind to immortal human cells and normal young cells made reversibly nondividing, indicating the antigens are not expressed in cells that are not senescent. The antibodies identified senescent cells in a mixed cell population and expression of the senescent cell antigens correlated strongly with the cells inability to synthesize DNA at the onset of senescence. The antigens appeared to be cell surface or extracellular matrix associated, and the epitopes were destroyed by mild trypsin treatment. Western analysis indicated all three antibodies reacted with fibronectin. Though the antigenic determinants on the fibronectin molecule were not accessible in the intact young cell, the epitopes were present in fibronectin extracted from both senescent and young cells, as well as purified human plasma fibronectin. These antibodies and the senescent specific expression of the antigens provide powerful tools to investigate the mechanisms leading to in vitro senescence. This may enable us to investigate directly the relationship between cellular aging and aging of the individual.  相似文献   

13.
Cultured cells in vitro from estrogen-induced rat prolactin-secreting adenomas (prolactinomas) were examined by indirect immunofluorescence microscopy for the distribution of cytoskeletal proteins and alterations of cytoskeleton after treatment with bromocriptine, colchicine and cytochalasin B (CB). After 8 days in culture, prolactinoma cells were well expanded and developed cytoplasmic processes were seen. The cytoplasmic microtubules were observed as fine reticular networks radiating from perinuclear portions toward the cell periphery when decorated with an antibody against tubulin. On the other hand, the actin filaments showed diffuse and spotty distribution when detected with an anti-actin antibody. Contaminated fibroblasts showed a reticular distribution of microtubules and a parallel array of actin cables which corresponds to "stress fibers" throughout the cytoplasm. After treatment with bromocriptine, the reticular distribution of microtubules in prolactinoma cells changed into a coarse and sparse pattern, which was identical with the changes in the distribution of tubulin after treatment with colchicine. On the other hand, distribution of actin was not affected by bromocriptine. Bromocriptine treatment did not alter the distribution of microtubules and actin filaments in fibroblasts, whereas colchicine changed the distribution of microtubules in both prolactinoma cells and fibroblasts. CB treatment changed the localization of actin filaments in both kinds of cells. These in vitro studies indicated bromocriptine would selectively affect the cytoplasmic microtubular system of prolactinoma cells.  相似文献   

14.
Summary Smooth feather muscles (mm. pennati) consist of bundles of smooth muscle cells which are attached to the feather follicles by short elastic tendons. In addition, some muscle bundles are interrupted by elastic tendons. The elastic tendon is composed of longitudinally arranged elastic fibers which branch and wavy bundles of collagen fibrils. Smooth muscle cells of the muscle bundles are attached to each other by desmosome-like junctions and by fusion of the basal laminae. The cytoplasm of the muscle cells is characterized by conspicuous thick filaments and abundant thin and intermediate filaments. These are attached to band-like dense patches (dense bands) at the plasma membrane which are particularly broad at the tapering end of the muscle cell. The contact surface between smooth muscle cells and their elastic tendon is considerably increased (i) by deep finger-like invaginations and indentations located at the tapering muscle end, and (ii) by branching of the coarse elastic fibers into slender processes, which are attached to the richly folded surface of the muscle cell endings by peripheral microfibrils. This intimate interlocking closely resembles the myotendinous junctions in skeletal muscle. In addition to fibroblasts and fibrocytes, the myotendinous junction of the young growing chicks contains numerous so-called myofibroblasts, which are suggested to represent smooth muscle cells differentiating into fibroblasts of the developing tendon.Dedicated to Professor Dr. Helmut Leonhardt on the occasion of his 60th birthdaySupported by a grant from the Deutsche Forschungsgemeinschaft (Dr. 91/1)  相似文献   

15.
The ultrastructural appearances of normal 3T3, SV40-transformed 3T3 (SV-3T3), and F1A revertant cell lines are compared. Both confluent and subconfluent cultures are described after in situ embedding of the cells for electron microscopy. There is striking nuclear pleomorphism in F1A revertant cells, with many cells having large nuclei compared to the less variable nuclear morphology of both normal 3T3 and SV-3T3 cells. Under the culture conditions used, deep infoldings of the nuclear envelope are prominent in growing cells, e.g., subconfluent normal 3T3 and confluent SV-3T3 cells. Such infoldings are infrequently seen in cultures which display contact inhibition of growth, e.g., normal 3T3 or F1A revertant cells grown just to confluence. In confluent cultures, the cytoplasmic organelles in revertant cells closely resemble those of normal 3T3 cells. In both normal and revertant cells in confluent culture, the peripheral cytoplasm (ectoplasm) has many 70 A filaments (alpha filaments), which are frequently aggregated into bundles. Alpha filaments are also abundant in the ectoplasm near regions of cell-to-cell apposition and in the motile cell processes (filopodia). The abundance and state of aggregation of alpha filaments correlates with contact inhibition of movement and growth in these cell lines since fewer bundles of alpha filaments are seen in growing cells than in contact-inhibited cells. This observation suggests that these filaments may be an important secondary component in the regulation of contact inhibition of movement and, possibly, of growth in normal and revertant cells.  相似文献   

16.
In migrating fibroblasts actomyosin II bundles are graded polarity (GP) bundles, a distinct organization to stress fibers. GP bundles are important for powering cell migration, yet have an unknown mechanism of formation. Electron microscopy and the fate of photobleached marks show actin filaments undergoing retrograde flow in filopodia, and the lamellipodium are structurally and dynamically linked with stationary GP bundles within the lamella. An individual filopodium initially protrudes, but then becomes separated from the tip of the lamellipodium and seeds the formation of a new GP bundle within the lamella. In individual live cells expressing both GFP-myosin II and RFP-actin, myosin II puncta localize to the base of an individual filopodium an average 28 s before the filopodium seeds the formation of a new GP bundle. Associated myosin II is stationary with respect to the substratum in new GP bundles. Inhibition of myosin II motor activity in live cells blocks appearance of new GP bundles in the lamella, without inhibition of cell protrusion in the same timescale. We conclude retrograde F-actin flow and myosin II activity within the leading cell edge delivers F-actin to the lamella to seed the formation of new GP bundles.  相似文献   

17.
The distribution of plectin in the cytoplasm of Rat1 and glioma C6 cells was examined using a combination of double and triple immunofluorescence microscopy and interference reflection microscopy. In cells examined shortly after subcultivation (less than 48 h), filamentous networks of plectin structures, resembling and partially colocalizing with vimentin filaments, were observed as reported in previous studies. In cells kept attached to the substrate without growth for periods of 72 h to 8 days (stationary cultures), thick fibrillary plectin structures were observed. These structures were located at the end of actin filament bundles and showed co-distribution with adhesion plaques (focal contacts), vinculin, and vimentin. Only relatively large adhesion plaques (dash-like contacts) were decorated by antibodies to plectin, smaller dot-like contacts at the cell edges remained undecorated. Moreover, in stationary Rat1 cells plectin structures were found to be predominantly colocalized with actin stress fibers. However, after treatment of such cells with colcemid, plectin's distribution changed dramatically. The protein was no longer associated with actin structures, but was distributed diffusely throughout the cytoplasm. After a similar treatment with cytochalasin B, plectin's association with stress fibers again was completely abolished, although stress fibers were still present. The association of plectin with focal contact-associated intermediate filaments was demonstrated also by immunogold electron microscopy of quick-frozen, deep-etched replicas of rat embryo fibroblasts. These data confirm previous reports suggesting a relationship between intermediate filaments on the one hand, and actin stress fibers and their associated plasma membrane junctional complexes, on the other. Furthermore, the data establish plectin as a novel component of focal contact complexes and suggest that plectin plays a role as mediator between intermediate filaments and actin filaments.  相似文献   

18.
One characteristic feature of senescent fibroblasts is flat, enlarged, and heterogeneous cell shapes. The present study was aimed to understand the structural basis of the senescent cell morphology. SDS-gel electrophoresis as well as western blotting demonstrated that there occurred a prominent protein band about 57 kDa in the senescent cells as compared with normal young or immortalized cells growing rapidly, and the protein was identified with a cytoskeletal protein, vimentin. In fact, senescent fibroblasts contained approximately threefold more vimentin protein, and fourfold more vimentin mRNA than young embryonic fibroblasts. In the senescent cells, vimentin cytoskeleton occurred as densely bundled filaments in parallel with the long axis of cell bodies, whereas in young or actively growing cells it showed short and thin vimentin filaments or fur-like irregular networks. It was further demonstrated that senescent cell shapes could be induced when a vimentin expression construct was transfected in young fibroblasts. These results suggest that senescent fibroblasts overproduce vimentin protein, and the overproduced vimentin filaments bring about the senescent cell morphology.  相似文献   

19.
Microinjection of the purified catalytic subunit of the cAMP-dependent protein kinase (A-kinase) into living rat embryo fibroblasts leads to dramatic changes in vimentin intermediate filament (IF) organization, involving the collapse of the filaments into tight bundles. In some cell types, this rearrangement of the IF proceeds further, leading to an apparent loss of filament integrity, resulting in a punctate staining pattern throughout the cytoplasm. Both these types of IF rearrangement are fully reversible, and similar to structural changes previously described for IF during mitosis. As shown by electron microscopy, in rat embryo fibroblasts these changes in IF structure do not involve the loss of the 10-nM filament structure but instead correspond to the bundling together of 25 or more individual filaments. Metabolic pulse labeling of injected cells reveals that accompanying these changes in IF organization is a dramatic increase in vimentin phosphorylation which appears maximal when the IF are fully rearranged. However, this increase in IF phosphorylation is not accompanied by any significant increase in soluble vimentin. Analysis of the sites of phosphorylation on vimentin from injected cells by either V8 protease cleavage, or two-dimensional tryptic peptide mapping, revealed increased de novo phosphorylation of two vimentin phosphopeptides after microinjection of A-kinase. These data strongly suggest that the site-specific phosphorylation of vimentin by A-kinase is responsible for the dynamic changes in IF organization observed after injection of the kinase into living cells, and may be involved in similar rearrangement of the IF previously described during mitosis or after heat shock.  相似文献   

20.
Galectin-3 is a galactose/lactose-binding protein (M(r) approximately 30,000), identified as a required factor in the splicing of pre-mRNA. In the LG1 strain of human diploid fibroblasts, galectin-3 could be found in both the nucleus and the cytoplasm of young, proliferating cells. In contrast, the protein was predominantly cytoplasmic in senescent LG1 cells that have lost replicative competence through in vitro culture. Incubation of young cells with leptomycin B, a drug that disrupts the interaction between the leucine-rich nuclear export signal and its receptor, resulted in the accumulation of galectin-3 inside the nucleus. In senescent cells, galectin-3 staining remained cytoplasmic even in the presence of the drug, thus suggesting that the observed localization in the cytoplasm was due to a lack of nuclear import. In heterodikaryons derived from fusion of young and senescent LG1 cells, the predominant phenotype was galectin-3 in both nuclei. These results suggest that senescent LG1 cells might lack a factor(s) specifically required for galectin-3 nuclear import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号