首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Decreasing the external sodium concentration ([Na+]e) to 10 mM in the presence of 280 mM sucrose had no significant effect on phosphocreatine (PCr) or on intracellular pH (pHi) as assessed using 31P nuclear magnetic resonance spectroscopy. Zero [Na+]e in the presence of 300 mM sucrose caused a fall in PCr levels to 50% of control values, and the pHi fell to 6.85 from a control value of 7.30. 1H nuclear magnetic resonance spectroscopy confirmed that the sucrose had not entered the tissue. The decreases in PCr content and in pHi, known to occur on depolarization using 40 mM external potassium concentration ([K+]e), were further decreased in the presence of 10 mM [Na+]e), to 51.4 +/- 4.0 and 6.80 +/- 0.10% of control values, respectively. The free intracellular magnesium concentration was significantly increased from a control value of 0.37 +/- 0.10 mM to 0.66 +/- 0.13 mM (p less than 0.001), when [Na+]e was decreased to 10 mM, but was not further affected by high [K+]e or zero Na+. Membrane permeabilities of the sodium substitutes N-methyl-D-glucamine (NMG), tris(hydroxymethyl)aminomethane (Tris), tetramethylammonium (TMA), and choline were assessed using 1H nuclear magnetic resonance spectroscopy. In the presence of 10 mM [Na+]e, NMG, TMA, and choline (all at 140 mM) were taken up and remained within the tissue for at least 2 h, but no uptake of Tris (140 mM) or sucrose (above) could be detected. Tissue lactate levels (from the lactate/N-acetyl aspartate ratio) increased in the presence of the substitutes that were taken up, although no change in pH was detected.  相似文献   

2.
The role of sodium ions in amylase secretion from rat parotid cells was studied using various Na+-free media and monensin. In a sucrose medium, amylase secretion was not stimulated by isoproterenol but was significantly stimulated by dibutyryl cAMP. In choline chloride and LiCl media, both isoproterenol and dibutyryl cAMP clearly evoked amylase release. Monensin itself elicited amylase secretion slightly, but significantly inhibited the secretion stimulated by isoproterenol or dibutyryl cAMP. The inhibitory effect of monensin was detectable even in choline chloride, LiCl and KCl media. These results indicate that sodium ions are not essential for amylase secretion from rat parotid cells and that the inhibitory effect of monensin is independent of influx of sodium ions or efflux of potassium ions.  相似文献   

3.
Human leucocytes incubated in tissue culture fluid of low-sodium concentration (2 mM; iso-osmolarity maintained with choline chloride) reached a new equlibrium within 1 hour and lost approximately 25% of intracellular potassium and 70% of intracellular sodium. The rate constant for ouabainsensitive sodium efflux fell by more than 50% and the ouabain-insensitive rate constant increased nearly threefold in the low-sodium medium. Total sodium efflux fell in proportion to internal sodium whereas ouabain-insensitive sodium efflux remained unchanged. A reduction in external sodium from 140 to 2 mM was associated with a 75% fall in sodium influx. In the low-sodium medium ouabainsensitive potassium influx exceeded ouabain-sensitive sodium efflux and no ouabain-sensitive potassium efflux could be demonstrated. Ouabain-insensitive potassium influx and that portion of potassium efflux which is dependent on external potassium fell in parallel in low-sodium cells, suggesting reduced activity of a ouabain-insensitive K:K exchange system.  相似文献   

4.
The effects of extracellular Na+, K+ and Cl- on neurite outgrowth of PC12 pheochromocytoma cells were studied. Nerve growth factor (NGF)-induced neurite formation was inhibited upon substitution of choline chloride for NaCl under normal culture conditions. It was found that neurite formation increased proportionately with the concentration of Na+ in medium up to 150 mM. When PC12 cells were exposed to NGF in suspension culture followed by transfer to new dishes, they showed neurite extention in response to NGF in an RNA- and protein synthesis-independent manner. Under these conditions, neurite outgrowth occurred normally in 60-150 mM Na+, whereas it decreased significantly at lower concentrations of Na+. Na+ dependency was also observed for cyclic AMP-mediated neurite formation of PC12 cells. In contrast neurite outgrowth was independent of K+ in the range 5-106 mM, suggesting that membrane potential did not play a role in this process. No alterations were observed in neurite outgrowth with Cl- replaced by NO3-, SO2-4, or 2-hydroxyethanesulfonate. Thus, extracellular Na+ plays a role in controlling neurite formation of these cells. An attempt was made to relate this effect to a decrease in cytoplasmic Ca2+ concentration monitored by a fluorescent dye sensitive to Ca2+.  相似文献   

5.
The effect of different levels of salt, sodium nitrite, polyphosphate and various sugars on growth, pigment production, protease activity and culture pH caused by Monascus purpureus was studied in broth medium and ground meat. The addition of sodium chloride (> 50.0 g l(-1)) and polyphosphate (> 3.0g l(-1)) to broth medium decreased mycelial growth, pigment production and protease activity of M. purpureus, whereas low concentrations of sodium nitrite (< 0.2 g l(-1)) promoted mycelial growth and pigment production. When the basal medium and ground meat contained salt, 150.0 g l(-1), the mould growth was stopped. The medium with fructose as carbon source proved to be the most suitable for mycelium growth and pigment production, with maltose and glucose being the second most productive. When sucrose and lactose were used as carbon sources, mycelium growth and pigment production were inhibited but the protease activity increased significantly. The mould showed more tolerance to salt and polyphosphate in ground meat than in broth medium and used sucrose as a carbon source as well as glucose for growth and pigment production in the meat mixture.  相似文献   

6.
The role of osmotic pressure in the exocytosis of prolactin from rat pituitary tumor (GH) cells in culture was investigated. Reducing the osmotic strength of the medium from 300 mosm to 150 mosm by removal of NaCl did not alter basal secretion of prolactin but inhibited secretion stimulated by thyrotropin-releasing hormone (TRH) and forskolin. Both basal and stimulated secretion of prolactin were inhibited by increasing the osmotic strength of the medium with NaCl (IC50 at approximately 500 mosm). The stimulated release of hormone from GH-cells was independent of sodium and unaffected by replacement of sodium ion with tetramethylammonium or choline, or by addition of 500 nM tetrodotoxin. Secretagogue-stimulated release was, however, dependent upon chloride. Exchange of medium chloride with benzoate or isethionate significantly inhibited the stimulated release of prolactin (IC50 at approximately 60 mM exchange) regardless of the secretagogue utilized (phorbol ester, forskolin, depolarization plus BAY K8644, or TRH). Exchange of medium chloride with either isethionate or benzoate reduced cell volume by 10% compared to 60% for sucrose and mannitol, suggesting that inhibition of secretion by isethionate exchange was not a result of increased intracellular osmotic pressure. Complete exchange of medium chloride with isethionate did not alter equilibrium [3H]methyl-TRH binding, resting internal [Ca2+], or the [Ca2+]i response to depolarization and TRH as measured with intracellularly trapped Fura 2. Chloride removal did not change resting internal pH and recovery from an acid load as measured by the intracellular pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. The stimulated secretion of prolactin was also inhibited by exchange of chloride with isethionate in normal pituitary cells in primary culture and the ability of normal cells to respond to the dopamine agonist bromocryptine was not affected by the exchange. These results suggest that exocytosis of prolactin from GH-cells and normal pituitary cells in culture is an osmotically driven process that is chloride-dependent. Stimulated release is more chloride-dependent than constitutive release. The inhibitory effect of isethionate substitution occurs after signal transduction and is distinct from the site of dopamine inhibition of prolactin release.  相似文献   

7.
1. Rates of Ca2+ inflow across the hepatocyte plasma membrane in the presence of vasopressin were estimated by using quin2. 2. Plots of the rate of Ca2+ inflow as a function of the intracellular quin2 concentration reached a plateau at about 1.7 mM intracellular quin2. Ca2+ inflow was inhibited by 60% in the presence of 400 microM-verapamil. 3. A plot of the rate of Ca2+ inflow as a function of the concentration of extracellular Ca2+ ([Ca2+]o) was biphasic. The second (slower) phase showed no sign of saturation at values of [Ca2+]o up to 5 mM. It is concluded that, in the presence of vasopressin, Ca2+ flows into the liver cell by two different processes, one of which is not readily saturated by Ca2+o. 4. The effect of the replacement of extracellular NaCl by choline or tetramethylammonium chloride on cellular Ca2+ movement was found to depend on the presence or absence of intracellular quin2. 5. In cells loaded with quin2 and incubated in the presence of choline or tetramethylammonium chloride, a small decrease in the basal intracellular free Ca2+ concentration ([Ca2+]i) was observed, and the increase in [Ca2+]i caused by the addition of vasopressin was considerably diminished when compared with cells incubated in the presence of NaCl. In cells loaded with quin2, replacement of NaCl by choline chloride caused a decrease in Ca2+ inflow in the presence of vasopressin, as measured by using quin2 or 45Ca2+ exchange, whereas no change in Ca2+ inflow was observed in the absence of vasopressin. 6. In cells not loaded with quin2, replacement of NaCl by choline chloride did not alter Ca2+ inflow either in the presence or in the absence of vasopressin. 7. It is concluded that (i) Ca2+ inflow through the basal and receptor-activated Ca2+ inflow systems does not involve the inward movement of Ca2+ in exchange for Na+ or the induction of Ca2+ inflow by intracellular Na+, and (ii) the presence of both intracellular quin2 and extracellular choline or tetramethylammonium chloride (in place of NaCl) inhibits Ca2+ inflow through the receptor-activated Ca2+ inflow system but not through the basal Ca2+ inflow system, and inhibits the release of Ca2+ from intracellular stores.  相似文献   

8.
High-Affinity [3H]Choline Accumulation in Cultured Human Skin Fibroblasts   总被引:1,自引:0,他引:1  
[3H]Choline can be transported across cell membranes by high-affinity (KT less than 5 microM) and low-affinity (KT much greater than 5 microM) systems. High-affinity choline accumulation (HACA) has been demonstrated in synaptosomes made from cholinergic brain regions such as the hippocampus and caudate-putamen. In cell culture, HACA has been demonstrated in glia and avian telencephalon, dissociated spinal cord, and muscle fibroblasts. We examined [3H]choline accumulation in a single normal human fibroblast line cultured from skin biopsy. [3H]Choline accumulation was temperature-dependent and linear with incubation time up to 6 min at 0.125 microM-choline. The apparent KT for [3H]choline was 5 microM, which is similar to that observed in avian fibroblasts. Isoosmotic replacement of Na+ with either Li+ (144 mM) or sucrose (288 mM) severely reduced [3H]choline accumulation (by 70-90%). Pre-incubation with ouabain (100 microM), sodium orthovanadate (100 microM), or 2,4-dinitrophenol (100 microM), or replacement of Ca2+ by Mg2+ had little or no effect on subsequent [3H]choline accumulation. [3H]Choline accumulation was inhibited by hemicholinium-3 (HC-3); after pre-incubation in HC-3 at 37 degrees C for 10 min, the IC50 (at 0.125 microM-choline) was 5.6 microM. The HC-3 sensitivity, Na+ dependence, and low KT suggest that human skin fibroblasts have a high-affinity transport system for choline.  相似文献   

9.
The mechanisms by which calcium (Ca2+) and inorganic phosphate (Pi) accumulate into matrix vesicles (MV) have not been elucidated. In the present study the characteristics of Pi uptake into MV isolated from mildly rachitic chicken growth plate cartilage have been investigated. The results indicate that Pi accumulates into MV mainly via a Na(+)-dependent Pi transport system. In the absence of NaCl in the extravesicular medium, Pi uptake was a nonsaturable process. In the presence of 150 mM NaCl, the initial rate of Pi uptake was 4.38 +/- 1.02-fold higher than with 150 mM choline chloride (mean +/- S.E., n = 8, p less than 0.005). Other cations showed partial activity to drive Pi into MV as compared to Na+:Li+ (64.4%) greater than K+ (39.8%) greater than choline (39.0%) greater than tetramethylammonium (30.0%) greater than N-methylglucamine (26.3%). Na(+)-dependent Pi transport activity displayed saturability towards increasing extra-vesicular concentrations of Na+ and Pi. The apparent Km for Pi was 0.68 +/- 0.16 mM. The Na+ concentration producing half-maximum Pi transport activity was 106.2 +/- 11.0 mM. Kinetic analysis suggests that Na+ interacts with the Pi carrier with a stoichiometry of more than one Na+ ion with one Pi molecule. In MV isolated from normal chicken growth plate cartilage, this Na(+)-dependent Pi transport system was barely expressed. In contrast to the effect on Pi uptake by MV, the activity of alkaline phosphatase was not changed when NaCl was substituted for choline chloride in the assay medium. In addition to this observation which suggests that this enzyme is not related to the Pi transport activity described in this study, levamisole, which inhibited alkaline phosphatase activity did not affect the Na(+)-dependent uptake of Pi. Both arsenate and phosphonoformic acid, two inhibitors of the epithelial Na(+)-dependent Pi transport systems, were active inhibitors of the Na(+)-dependent Pi uptake by MV with a higher potency for phosphonoformic acid. Associated with the expression of a facilitated Na(+)-coupled Pi transport in MV, in vitro calcification assessed by 45Ca2+ uptake also showed a marked dependence on extravesicular sodium. This relationship was markedly attenuated in MV isolated from normal chicken growth plate cartilage expressing a weak Na(+)-facilitated Pi transport activity. In conclusion, a saturable Na(+)-dependent Pi carrier has been characterized which facilitates Pi transport in MV. Its potential role for Ca-Pi accumulation into MV and subsequent development of vesicular calcification followed by mineralization of the osteogenic matrix is proposed and remains to be further investigated.  相似文献   

10.
The effect of changes in sodium and osmolarity on renin secretion has been studied in the isolated perfused rat kidney. Perfusion with low sodium buffer (110 mM/l) produced a significant increase in renin secretion compared with control experiments (Na+:135 mM/l). Since the presence of tubules seems necessary for such an effect to take place, it suggests that the high renin secretion stimulated by a low sodium buffer centers in the Macula densa. Perfusion with high sodium buffer (170 mM/l; osmolarity 350 mOs/l) induces a stimulation on renin release. However, a greater rise in renin is achieved in control experiments if choline chloride increases the osmolarity from 300 to 350 mOs/l. All this suggests that high sodium buffer, independently of its osmotic effect, has an inhibitory role on renin release.  相似文献   

11.
Role of sodium in the growth of a ruminal selenomonad.   总被引:1,自引:1,他引:0       下载免费PDF全文
The ruminal selenomonad strain H18 grew rapidly (mu = 0.50 h-1) in a defined medium containing glucose, ammonia, purified amino acids, and sodium (95 mM); little if any ammonia was utilized as a nitrogen source. When the sodium salts were replaced by potassium salts (0.13 mM sodium), there was a small reduction in growth rate (mu = 0.34 h-1), and under these conditions greater than 95% of the cell nitrogen was derived from ammonia. No growth was observed when the medium lacked sodium (less than 0.35 mM) and amino acids were the only nitrogen source. At least six amino acid transport systems (aspartate, glutamine, lysine, phenylalanine, serine, and valine) were sodium dependent, and these systems could be driven by an electrical potential (delta psi) or a chemical gradient of sodium. H18 utilized lactate as an energy source for growth, but only when sodium and aspartate were added to the medium. Malate or fumarate was able to replace aspartate, and when these acids were added, sodium was no longer required. Glucose-grown cells accumulated large amounts of polysaccharide (64% of dry weight), and when the exogenous glucose was depleted, this material was converted to acetate and propionate as long as sodium was present. When the cells were incubated in buffers lacking sodium, succinate accumulated and exogenous succinate could not be decarboxylated. Because sodium had little effect on the transmembrane pH gradient at pH 6.7 to 4.5, it did not appear that sodium was required for intracellular pH regulation.  相似文献   

12.
A study has been made with human red cells of sodium movements that are sensitive to the drug furosemide. The aim was to see if furosemide-sensitive movements that are symmetrical (exchange) became asymmetrical (net transport) on replacement of chloride with nitrate as the major external anion. Cells were incubated for 4 h at 37 degrees C with 140 mM sodium, and chloride or nitrate as the principal anion. Under a variety of conditions (presence and absence of ouabain or furosemide, or both) the cell sodium concentration was always higher when chloride was replaced with nitrate. The cells became leakier to sodium. Tracer studies indicated that, in contrast to the results in chloride medium, the decrease in sodium influx was greater than the fall in efflux when furosemide was added to cells in nitrate medium. The results confirm that the sensitivity of sodium efflux to furosemide depended on chloride. However, influx showed a different sensitivity in that furosemide still inhibited in cells incubated in nitrate medium. The stimulation of sodium influx with nitrate medium was independent of external potassium (10-50 mM) and the furosemide-sensitive influx was also constant. It is concluded that symmetrical transmembrane sodium movements with cells in chloride medium became downhill asymmetrical in nitrate medium, giving a net gain of cell sodium that was insensitive to ouabain and sensitive to furosemide. The drug thus partly retarded the gain of cell sodium that otherwise occurred in the somewhat leaky cells.  相似文献   

13.
The role of sodium ion in superoxide (O2-) generation by human peripheral neutrophils was investigated. Cells were activated by exposure to the synthetic tripeptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP), and O2- release was assessed by ferricytochrome c reduction after 5 min of incubation at 37 degrees C in the presence of FMLP 4 X 10(-8) M. In the absence of monovalent cations (isotonic glucose), negligible O2- generation occurred. There was a progressive increase in the magnitude of FMLP-induced O2- generation with increasing Na+ concentration up to 90 mM, where the response was noted to plateau. Varying the K+ concentration (1 to 10 mM) had no effect on the amount of O2- produced in the presence of Na+ 140 mM. FMLP also stimulated 22Na+ and 48Ca2+ uptake by the cells in a dose- and time-dependent fashion. FMLP-induced 22Na+ uptake appeared to be independent of the external Ca2+ concentration ( to 4 mM). In contrast, there was a progressive decrease in themagnitude of the FMLP-induced increase in 45Ca2+ uptake as the Na+ concentration was reduced by replacement with choline+ or glucose. These studies support a requirement for Na+ in FMLP-induced O2- generation and suggest that a Na+ influx may underlie the nature of this requirement. The data are also consistent with the hypothesis that a Na+ influx may precede the Ca2+ influx in the FMLP-induced activation sequence.  相似文献   

14.
Proteins labeled with [35S]methionine or [3H]leucine were generated in vitro in bullfrog dorsal root ganglia and their fast axonal transport in the spinal nerves was followed during a subsequent incubation period. Incubation of the ganglia in a medium where sucrose, choline chloride, or sodium isethionate replaced NaCl caused respectively an 88, a 37, or a 76% reduction in the quantity of proteins carried by the fast axonal transport system; no decrease in synthesis of labeled proteins was observed and protein transport followed the usual time course. Incubation of desheathed spinal nerves in a medium where sucrose replaced NaCl reduced by 67% the quantity of labeled proteins which were transported past the desheathed region. Although both the axons and the dorsal root ganglia exhibit the requirement for monovalent ions to maintain fast axonal transport, the possibility that the ionic requirements of the ganglia pertain to the somal portion of the nerve cell is discussed.  相似文献   

15.
Vitellogenic oocytes of Dysdercus intermedius (Heteroptera: Pyrrhocoridae) were treated with the proton ionophore monensin in order to load the ooplasm with protons along the electrochemical gradient. Additionally, changes in the ooplasmic pH (DeltapH(OOC)) were recorded during exposure the oocytes to potassium-free medium (K(+)(MED)=0mM; choline for K(+)) or sodium-free medium (Na(+)(MED)=0mM; 40mM of choline for 40mM of Na(+)). The following observations were made: 1) The average ooplasmic pH (pH(OOC)) recorded during immersion in physiological saline solution (PSS) was pH(OOC(PSS))=7.40. 2) K(+)(MED) had no effect on pH(OOC) (pH(OOC(K-FREE)) congruent with pH(OOC(PSS))). 3) In sodium-free medium the pH(OOC) decreased by H(+) influx in the magnitude of DeltapH(OOC(Na-FREE))=pH(OOC(Na-FREE))-pH(OOC(PSS))=-0.05 pH units. 4) The decreased pH(OOC) observed in sodium-free medium returned to initial values (7.40) by pumping out H(+) when 40mM of choline were replaced by 40mM of Na(+). 5) Addition of monensin (10&mgr;M; under the condition of Na(+)(MED)=0mM) reduced pH(OOC) in the magnitude of DeltapH(OOC(MON))=pH(OOC(MON))-pH(OOC(PSS))=-0.14. 6) Monensin induced ooplasmic proton loading was reversible when 40mM choline were replaced by 40mM Na(+).VITELLOGENESIS WAS DEMONSTRATED BY THE ACCUMULATION OF FLUORESCENCE LABELLED HEMOLYMPH PROTEINS IN YOLK SPHERES IN THE CORTEX OF THE OOCYTE: 1) Yolk formation continued in potassium-free medium. 2) The formation of yolk spheres came to a halt in sodium-free medium and, additionally, in the presence of monensin (10&mgr;M; Na(+)(MED)=0mM). 3) Breaks in yolk formation under the condition of Na(+)(MED)=0mM or during monensin treatment were stopped by replacing 40mM of choline with 40mM of Na(+). The results obtained using proton-specific microelectrodes and the in vitro assay to detect the formation of yolk spheres indicate that both the ooplasmic pH regulation and the acidification of vesicles during vitellogenesis are under control of a H(+)/Na(+) antiporter.  相似文献   

16.
Rat pancreatic islets were used for studying the effects of depolarization on their sodium content. The islet sodium was markedly affected by small variations of extracellular K+. As with increased K+, the presence of low concentrations of glucose (5 mM) and arginine (2 mM) decreased the sodium content. The latter substances did not lower the sodium concentration below the value obtained by depolarization with excessive K+, nor was it possible to obtain a further decrease when 10 mM arginine was combined with 5 mM glucose. The sodium content was also reduced in the presence of 10 mM L-leucine, 10 mM 2-ketoisocaproate and 0.1 mM Ba2+. Tolbutamide differed from the other depolarizing agents in that it increased the sodium concentration, an effect manifested also in the presence of excessive K+. The observation that depolarizing agents other than sulfonylureas do not increase but actually reduce sodium implies that islet cells are exceptional among electrically excitable cells. The observed reduction of sodium may reflect activation of a voltage-sensitive carrier mechanism for outward transport of Na+.  相似文献   

17.
The affinity of binding of the chemotactic peptide N-formylnorleucylleucylphenylalanine to rabbit peritoneal polymorphonuclear leukocytes is increased when sodium ions are removed from the medium. In Hanks' balanced salt solution, the dissociation constant of the binding is about 2 X 10(-8) M, while in Na+-free medium, the dissociation constant is between 3 and 6 X 10(-9) M. Removal of Na+ appears to cause little or no change in receptor number. The change in affinity is rapid and reversible, occurs at 4 degrees C as well as 37 degrees C, and occurs when the Na+ is replaced by K+, choline, or sucrose. The increased binding of low concentrations of peptide is seen on broken as well as whole cells and therefore does not depend on an ion gradient across the membrane. The high affinity receptors are functional in mediating peptide uptake and lysosomal enzyme release. The receptors undergo down-regulation in Na+-free medium, and the dose dependence of the receptor loss is shifted to lower concentrations consistent with the higher affinity of the binding.  相似文献   

18.
The taste responsiveness of six squirrel monkeys, five pigtail macaques, four olive baboons and four spider monkeys to monsodium glutamate (MSG) and to sodium chloride was assessed in two-bottle preference tests of brief duration (2 min). When given the choice between tap water and defined concentrations of the two tastants dissolved in tap water, the animals were found to significantly discriminate concentrations of MSG as low as 2 mM (spider monkeys and olive baboons), 50 mM (pigtail macaques) and 300 mM (squirrel monkeys) from the solvent. With sodium chloride, taste preference thresholds were found to be 1 mM (spider monkeys), 20 mM (pigtail macaques), 50 mM (olive baboons), and 200 mM (squirrel monkeys), respectively. Across-species comparisons of the degree of preference for MSG and sodium chloride displayed by the four primate species showed the same order of spider monkeys>olive baboons>pigtail macaques>squirrel monkeys. When presented with equimolar concentrations of different tastants, all four species preferred sucrose as well as a mixture of sucrose and sodium chloride over MSG, and--at least at one concentration--they preferred MSG over sodium chloride. The results support the assertion that the taste responsiveness of the four primate species to MSG and sodium chloride might reflect an evolutionary adaptation to their respective dietary habits.  相似文献   

19.
The selectivity of sodium channels in squid axon membranes was investigated with widely varying concentrations of internal ions. The selectivity ratio, PNa/PK, determined from reversal potentials decreases from 12.8 to 5.7 to 3.5 as the concentration of internal potassium is reduced from 530 to 180 to 50 mM, respectively. The internal KF perfusion medium can be diluted by tetramethylammonium (TMA), Tris, or sucrose solutions with the same decrease in PNa/PK. The changes in the selectivity ratio depend upon internal permeant ion concentration rather than ionic strength, membrane potential, or chloride permeability. Lowering the internal concentration of cesium, rubidium, guanidnium, or ammonium also reduces PNa/Pion. The selective sequence of the sodium channel is: Na greater than guanidinium greater than ammonium greater than K greater than Rb greater than Cs.  相似文献   

20.
The aim of this study was to analyze the relationship of the Na+/Ca2+ exchanger, cytosolic calcium, and chloride to the transepithelial transport of sodium in isolated frog skin. Sodium transport was measured as amiloride-inhibitable short circuit current (SCC). We studied the effect of variations in the concentrations of external chloride and of the manipulation of calcium on sensitive amiloride SCC. Modifications in the movement of Ca2+ were induced by an ionophore, A23187, and a Ca2+ channel blocker, nifedipine. Calcium ionophore A23187 (5 and 20 microM), in a normal Ringer's solution, increased SCC and transepithelial potential difference (PD). In contrast, nifedipine (20 microM) reduced SCC and PD. The role of the Na+/Ca2+ exchanger was studied using dichlorobenzamil (DCB, 50 microM) and quinacrine (1 mM), inhibitors of this exchanger. They selectively increased SCC and PD on the mucosal side of the skin, with no effect on the serosal side. This response occurred only in the presence of extracellular calcium. Replacement of NaCl by sodium methanesulfonate or the addition of furosemide (1 mM) at the serosal compartment, decreased basal SCC and PD and blocked the response to A23187 and the mucosal effect of DCB and quinacrine. These results suggest the presence of an Na+/Ca2+ exchanger located on the mucosal side of the frog skin, which participates in the transepithelial sodium transport. The action of this exchanger may be modulated by external chloride and calcium. J. Exp. Zool. 289:23-32, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号