首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
Starch branching enzyme (SBE) catalyzes the cleavage of α-1,4-linkages and the subsequent transfer of α-1,4 glucan to form an α-1,6 branch point in amylopectin. We determined the crystal structure of the rice branching enzyme I (BEI) in complex with maltopentaose at a resolution of 2.2 Å. Maltopentaose bound to a hydrophobic pocket formed by the N-terminal helix, carbohydrate-binding module 48 (CBM48), and α-amylase domain. In addition, glucose moieties could be observed at molecular surfaces on the N-terminal helix (α2) and CBM48. Amino acid residues involved in the carbohydrate bindings are highly conserved in other SBEs, suggesting their generally conserved role in substrate binding for SBEs.  相似文献   

2.
植物淀粉合成的调控酶   总被引:6,自引:0,他引:6  
淀粉是植物中最普通的碳水化合物,是人类最主要的食品来源与重要的工业原料。植物淀粉的生物合成主要涉及了4种酶—ADPG焦磷酸化酶、淀粉合成酶、淀粉分支酶和淀粉去分支酶,它们在淀粉的生物合成中发挥着不同作用。近年来,随着基因工程技术的迅速发展及与这些酶有关的众多突变体的发现,使人们对这些酶的结构、特性、功能及表达调控等方面的研究取得了重要进展。并且,人们已开始利用基因工程技术调控植物淀粉的数量与特性,取得了一定成效。在此,文章介绍了调控植物淀粉合成关键酶的生化特性、基因调控及利用基因工程改良植物淀粉等方面所取得进展。  相似文献   

3.
4.
《Plant science》1988,57(1):1-8
Starch branching enzyme (α-1,4-glucan: α-1,4-glucan-6-glycosyl transferase; EC 2.4.1.18) catalyzes the formation of the α-1,6-bond in branched starch molecules such as amylopectin. Some characteristics of starch branching enzyme in rice endosperm (Oryza sativa L.) were determined because of the importance of starch structure for rice quality. Two or three peaks of starch branching enzyme activity were resolved by anion-exchange chromatography of extracts from high amylose rice. The properties of rice starch branching enzyme were similar to those found for the enzyme from other plant sources except for a much lower molecular weight. Rice branching enzyme had an apparent molecular weight of 40 000 as estimated by gel permeation chromatography. Multiple forms of starch branching enzyme could also be resolved in milled rice, suggesting that relationships between starch quality and characteristics of starch branching enzyme could be examined in the mature grain after harvest.  相似文献   

5.
Branching enzyme is involved in determining the structure of starch and glycogen. It catalyzes the formation of branch points by cleavage and transfer of alpha-1,4-glucan chains to alpha-1,6 branch points. Branching enzyme belongs to the amylolytic family of enzymes containing four conserved regions in a central (alpha/beta)8-barrel. Limited proteolysis of the branching enzyme from Escherichia coli (84 kDa) by proteinase K produced a truncated protein of 70-kDa, which still retained 40-60% of branching activity, depending on the type of assay used. Amino acid sequencing showed that the 70-kDa protein lacked 111 or 113 residues at the amino terminal, whereas the carboxy terminal was still intact. We purified this truncated enzyme to homogeneity and analyzed its properties. The enzyme had a three- to fourfold lower catalytic efficiency than the native enzyme, whereas the substrate specificity was unaltered. Furthermore, a branching enzyme with 112 residues deleted at the amino terminal was constructed by recombinant technology and found to have properties identical to those of the proteolyzed enzyme.  相似文献   

6.
Boyer CD  Preiss J 《Plant physiology》1981,67(6):1141-1145
Soluble starch synthase and starch-branching enzymes in extracts from kernels of four maize genotypes were compared. Extracts from normal (nonmutant) maize were found to contain two starch synthases and three branching enzyme fractions. The different fractions could be distinguished by chromatographic properties and kinetic properties under various assay conditions. Kernels homozygous for the recessive amylose-extender (ae) allele were missing branching enzyme IIb. In addition, the citrate-stimulated activity of starch synthase I was reduced. This activity could be regenerated by the addition of branching enzyme to this fraction. No other starch synthase fractions were different from normal enzymes. Extracts from kernels homozygous for the recessive dull (du) allele were found to contain lower branching enzyme IIa and starch synthase II activities. Other fractions were not different from the normal enzymes. Analysis of extracts from kernels of the double mutant ae du indicated that the two mutants act independently. Branching enzyme IIb was absent and the citrate-stimulated reaction of starch synthase I was reduced but could be regenerated by the addition of branching enzyme (ae properties) and both branching enzyme IIa and starch synthase II were greatly reduced (du properties). Starch from ae and du endosperms contains higher amylose (66 and 42%, respectively) than normal endosperm (26%). In addition, the amylopectin fraction of ae starch is less highly branched than amylopectin from normal or du starch. The above observations suggest that the alterations of the starch may be accounted for by changes in the soluble synthase and branching enzyme fractions.  相似文献   

7.
Tapioca starch was modified using branching enzyme (BE) isolated from Bacillus subtilis 168 and Bacillus stearothermophilus maltogenic amylase (BSMA), and their molecular fine structure and susceptibility to amylolytic enzymes were investigated. By BE treatment, the molecular weight decreased from 3.1 × 108 to 1.7 × 106, the number of shorter branch chains (DP 6–12) increased, the number of longer branch chains (DP >25) decreased, and amylose content decreased from 18.9% to 0.75%. This indicated that α–1,4 linkages of amylose and amylopectin were cleaved, and moiety of glycosyl residues were transferred to another amylose and amylopectin to produce branched glucan and BE-treated tapioca starch by forming α–1,6 branch linkages. The product was further modified with BSMA to produce highly-branched tapioca starch with 9.7% of extra branch points. When subject to digestion with human pancreatic α-amylase (HPA), porcine pancreatic α-amylase (PPA) and glucoamylase, highly-branched tapioca starch gave significantly lowered α-amylase susceptibility (7.5 times, 14.4 times and 3.9 times, respectively), compared to native tapioca starch.  相似文献   

8.
Starch branching enzyme (SBE) catalyzes the cleavage of alpha-1.4-linkages and the subsequent transfer of alpha-1.4 glucan to form an alpha-1.6 branch point in amylopectin. We overproduced rice branching enzyme I (BEI) in Escherichia coli cells, and the resulting enzyme (rBEI) was characterized with respect to biochemical and crystallographic properties. Specific activities were calculated to be 20.8 units/mg and 2.5 units/mg respectively when amylose and amylopectin were used as substrates. Site-directed mutations of Tyr235, Asp270, His275, Arg342, Asp344, Glu399, and His467 conserved in the alpha-amylase family enzymes drastically reduced catalytic activity of rBEI. This result suggests that the structures of BEI and the other alpha-amylase family enzymes are similar and that they share common catalytic mechanisms. Crystals of rBEI were grown under appropriate conditions and the crystals diffracted to a resolution of 3.0 A on a synchrotron X-ray source.  相似文献   

9.
Methods previously described for glycogen or amylopectin branching enzymatic activity are insufficiently sensitive and not quantitative. A new, more sensitive, specific, and quantitative one was developed. It is based upon the quantitation of the glucose residues joined by alpha 1,6 bonds introduced by varying amounts of branching enzyme. The procedure involved the synthesis of a polysaccharide from Glc-1-P and phosphorylase in the presence of the sample to be tested. The branched polysaccharide was then purified and the glucoses involved in the branching points were quantitated after degradation with phosphorylase and debranching enzymes. This method appeared to be useful, not only in enzymatic activity determinations but also in the study of the structure of alpha-D-glucans when combined with those of total polysaccharide quantitation, such as iodine and phenol-sulfuric acid.  相似文献   

10.
Starch is made up of amylose (linear alpha-1,4-polyglucans) and amylopectin (alpha-1,6-branched polyglucans). Amylopectin has a distinct fine structure called multiple cluster structure and is synthesized by multiple subunits or isoforms of four classes of enzymes: ADPglucose pyrophosphorylase, soluble starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE). In the present paper, based on analyses of mutants and transgenic lines of rice in which each enzyme activity is affected, the contribution of the individual isoform to the fine structure of amylopectin in rice endosperm is evaluated, and a new model referred to as the "two-step branching and improper branch clearing model" is proposed to explain how amylopectin is synthesized. The model emphasizes that two sets of reactions, alpha-1,6-branch formation and the subsequent alpha-1,4-chain elongation, are catalyzed by distinct BE and SS isoforms, respectively, are fundamental to the construction of the cluster structure. The model also assesses the role of DBE, namely isoamylase or in addition pullulanase, to remove unnecessary alpha-1,6-glucosidic linkages that are occasionally formed at improper positions apart from two densely branched regions of the cluster.  相似文献   

11.
Starch-branching enzymes (SBEs) catalyze the formation of alpha(1-->6) glycoside bonds in glucan polymers, thus, affecting the structure of amylopectin and starch granules. Two distinct classes of SBE are generally conserved in higher plants, although the specific role(s) of each isoform in determination of starch structure is not clearly understood. This study used a heterologous in vivo system to isolate the function of each of the three known SBE isoforms of maize (Zea mays) away from the other plant enzymes involved in starch biosynthesis. The ascomycete Brewer's yeast (Saccharomyces cerevisiae) was employed as the host species. All possible combinations of maize SBEs were expressed in the absence of the endogenous glucan-branching enzyme. Each maize SBE was functional in yeast cells, although SBEI had a significant effect only if SBEIIa and SBEIIb also were present. SBEI by itself did not support glucan accumulation, whereas SBEIIa and SBEIIb both functioned along with the native glycogen synthases (GSs) to produce significant quantities of alpha-glucan polymers. SBEIIa was phenotypically dominant to SBEIIb in terms of glucan structure. The specific branching enzyme present had a significant effect on the molecular weight of the product. From these data we suggest that SBEs and GSs work in a cyclically interdependent fashion, such that SBE action is needed for optimal GS activity; and GS, in turn, influences the further effects of SBE. Also, SBEIIa and SBEIIb appear to act before SBEI during polymer assembly in this heterologous system.  相似文献   

12.
Pan D  Nelson OE 《Plant physiology》1984,74(2):324-328
Many of the sugary-1 mutants of maize (Zea mays L.) have the highly branched water-soluble polysaccharide, phytoglycogen, in quantities equal to or greater than starch as an endosperm storage product in mature seeds. We find that all sugary mutants investigated are deficient in debranching enzyme [α-(1, 6)-glucosidase] activity in endosperm tissue 23 days postpollination and suggest that this deficiency is the primary biochemical lesion leading to phytoglycogen accumulation in sugary endosperms. This would indicate that the amylopectin component of starch depends on an equilibrium between the activities of branching enzymes introducing α-1,6 branch points into the linear α-1,4 glucans and debranching enzymes. The debranching enzyme activities from nonsugary endosperms can be separated into three peaks on a hydroxyapatite column. The sugary endosperm extracts lack one of these peaks of activity while the other two fractions have much reduced activity. The embryos of developing seeds (23 days after pollination) from both sugary and nonsugary genotypes have equivalent debranching activity. The debranching enzyme activity of developing endosperms is proportional to the number of copies (0 to 3) of the nonmutant (Su) allele present suggesting that the Su allele may be the structural gene for this debranching enzyme, although this is not definitive. This identification of debranching enzyme activity as being the biochemical lesion in sugary endosperms is consistent with several previous observations on the mutant.  相似文献   

13.
Two adenosine diphosphoglucose: α-1,4-glucan α-4-glucosyl-transferases were extracted from kernels of waxy maize harvested 22 days after pollination and separated by gradient elution from a diethylaminoethyl-cellulose column. Both fractions could utilize amylopectin, amylose, glycogen, maltotriose and maltose as primers. The rate of glucose transfer from adenosine diphosphoglucose to rabbit liver glycogen of fraction II was 78% of the rate of glucose transfer to amylopectin, but with fraction I the rate of transfer of glucose to rabbit liver glycogen was 380% of that observed to amylopectin. Glucan synthesis in the absence of added primer was found in fraction I in the presence of 0.5 m sodium citrate and bovine serum albumin. The unprimed product was a methanol-precipitable glucan with principally α-1,4 linkages and some α-1,6 linkages, and its iodine spectrum was similar to that of amylopectin.  相似文献   

14.
Starch branching enzyme was purified from potato (Solanum tuberosum L.) tubers as a single species of 79 kilodaltons and specific antibodies were prepared against both the native enzyme and against the gel-purified, denatured enzyme. The activity of potato branching enzyme could only be neutralized by antinative potato branching enzyme, whereas both types of antibodies reacted with denatured potato branching enzyme. Starch branching enzymes were also isolated from maize (Zea mays L.) kernels. All of the denatured forms of the maize enzyme reacted with antidenatured potato branching enzyme, whereas recognition by antinative potato branching enzyme was limited to maize branching enzymes I and IIb. Antibodies directed against the denatured potato enzyme were unable to neutralize the activity of any of the maize branching enzymes. Antinative potato branching enzyme fully inhibited the activity of maize branching enzyme I; the neutralized maize enzyme was identified as a 82 kilodalton protein. It is concluded that potato branching enzyme (Mr = 79,000) shares a high degree of similarity with maize branching enzyme I (Mr = 82,000), in the native as well as the denatured form. Cross-reactivity between potato branching enzyme and the other forms of maize branching enzyme was observed only after denaturation, which suggests mutual sequence similarities between these species.  相似文献   

15.
It is widely known that some of the starch synthases and starch-branching enzymes are trapped inside the starch granule matrix during the course of starch deposition in amyloplasts. The objective of this study was to use maize SSI to further our understanding of the protein domains involved in starch granule entrapment and identify the chain-length specificities of the enzyme. Using affinity gel electrophoresis, we measured the dissociation constants of maize SSI and its truncated forms using various glucans. The enzyme has a high degree of specificity in terms of its substrate-enzyme dissociation constant, but has a greatly elevated affinity for increasing chain lengths of alpha-1, 4 glucans. Deletion of the N-terminal arm of SSI did not affect the Kd value. Further small deletions of either N- or C-terminal domains resulted in a complete loss of any measurable affinity for its substrate, suggesting that the starch-affinity domain of SSI is not discrete from the catalytic domain. Greater affinity was displayed for the amylopectin fraction of starch as compared to amylose, whereas glycogen revealed the lowest affinity. However, when the outer chain lengths (OCL) of glycogen were extended using the phosphorylase enzyme, we found an increase in affinity for SSI between an average OCL of 7 and 14, and then an apparently exponential increase to an average OCL of 21. On the other hand, the catalytic ability of SSI was reduced several-fold using these glucans with extended chain lengths as substrates, and most of the label from [14C]ADPG was incorporated into shorter chains of dp < 10. We conclude that the rate of catalysis of SSI enzyme decreases with the OCL of its glucan substrate, and it has a very high affinity for the longer glucan chains of dp approximately 20, rendering the enzyme catalytically incapable at longer chain lengths. Based on the observations in this study, we propose that during amylopectin synthesis shorter A and B1 chains are extended by SSI up to a critical chain length that soon becomes unsuitable for catalysis by SSI and hence cannot be elongated further by this enzyme. Instead, SSI is likely to become entrapped as a relatively inactive protein within the starch granule. Further glucan extension for continuation of amylopectin synthesis must require a handover to other SS enzymes which can extend the glucan chains further or for branching by branching enzymes. If this is correct, this proposal provides a biochemical basis to explain how the specificities of various SS enzymes determine and set the limitations on the length of A, B, C chains in the starch granule.  相似文献   

16.
The storage glucan of the alga, Glaucocystis nostochinearum was isolated in dimethyl sulfoxide. The absorption spectrum of its iodine complex was identical with those of other green algae but differed from that of blue-green algae. It was similar to amylopectin, and was much less branched than the phytoglycogen of Cyanophytes. The pattern of glycosyltransferase isozymes involved in the synthesis of this glucan (phosphorylases, synthetases and branching isozymes) was similar to those of Chlorophytes. The branching isozymes of this alga were typical Chlorophycean “Q” enzymes and could only insert branch linkages into linear amylose-like substrates; they were unable to further branch amylopectins, as can the branching isozymes of blue-green algae. If the plastids of this alga are endosymbiotic blue-green algae, then they have lost the ability to form highly branched glucans typical of Cyanophytes.  相似文献   

17.
H P Guan  T Baba    J Preiss 《Plant physiology》1994,104(4):1449-1453
The gene encoding for mature branching enzyme (BE) I (BEI) of maize (Zea mays L.) endosperm has been expressed in Escherichia coli using the T7 promoter. The expressed BEI was purified to near homogeneity so that amylolytic activity and bacterial BE could be completely eliminated from the BE preparation. The recombinant enzyme showed properties very similar to those of BEI purified from developing maize endosperm with respect to branching amylose and amylopectin. This result confirmed our earlier report that maize endosperm BEI had a higher rate of branching amylose and a much lower rate (less than 10% of that of branching amylose) of branching amylopectin. This study also showed a great advantage in purifying BEI from the bacterial expression system rather than from developing maize endosperm. Most important, this study has established the system with which to study the structure-function relationships of the maize BEI using site-directed mutagenesis.  相似文献   

18.
Concentrations of ADPglucose:α-1,4-glucan-4-glucosyltransferase (starch synthase) and α-1,4 glucan: α-1,4-glucan-6-glycosyltransferase (branching enzyme) from developing seeds of Pisum sativum were measured. Primed starch synthase activity increased from 8 to 14 days after anthesis and decreased by 50 % at 26 days. Citrate-stimulated starch synthase activity was highest at 10 days after anthesis decreasing to low levels by 22 days. Branching enzyme activity increased from 8 to 18 days after anthesis and decreased little by 26 days. Two fractions of starch synthase were recovered by gradient elution from DEAE-cellulose of extracts from 12- and 18-day-old seeds. The two fractions differed in primer specificity, Km for ADPG and relative amounts of citrate-stimulated activity. A major and minor fraction of branching enzyme were observed in extracts from both 12- and 18-day-old seeds. Marked differences in the relative abilities ofthe two branching enzyme fractions to stimulate phosphorylase and to branch amylose as well as pH optima were found. Although the content of the starch synthase and branching enzyme fractions varied with seed age, little difference was seen in the properties of chromatographically similar fractions. Therefore, the changes in starch synthase and branching enzyme activity during pea seed development resulted from changes in the concentrations of a few enzyme forms, but not the appearance of different enzyme forms.  相似文献   

19.
Soluble starch synthases and branching enzymes have been partially purified from developing sorghum seeds. Two major fractions and one minor fraction of starch synthase were eluted on DEAE-cellulose chromatography. The minor enzyme eluted first and was similar to the early eluting major synthase in citrate-stimulated activity, faster reaction rates with glycogen primers than amylopectin primers, and in Km for ADP-glucose (0.05 and 0.08 mM, respectively). The starch synthase peak eluted last had no citrate-stimulated activity, was equally active with glycogen and amylopectin primers, and had the highest Km for ADP-glucose (0.10 mM). Four fractions of branching enzymes were recovered from DEAE-cellulose chromatography. One fraction eluted in the buffer wash; the other three co-eluted with the three starch synthases. All four fractions could branch amylose or amylopectin, and stimulated α-glucan synthesis catalysed by phosphorylase. Electrophoretic separation and activity staining for starch synthase of crude extracts and DEAE-cellulose fractions demonstrated complex banding patterns. The colour of the bands after iodine staining indicated that branching enzyme and starch synthase co-migrated during electrophoresis.  相似文献   

20.
Q-Enzyme, the enzyme that synthesizes the 1,6-alpha-glucosidic branch linkages of amylopectin, has been purified from potato to near homogeneity. The molecular weight of the enzyme is 85000. The active enzyme is a monomer, with a molar activity at pH 7.0 and 24 degrees C of 15. The energy of activation is 25 kJ/mol below 15 degrees C, changing sharply to 63 kJ/mol above that temperature. Enzyme activity is not affected by Mg2+ or ATP. There are about 11 readily titratable sulfhydryl groups per molecule. The evidence that the enzyme is a single protein entity, without hydrolytic activity towards amylose, contrasts with an earlier report that Q-enzyme consists of two components, a hydrolase with molecular weight 70000, and a transferase with molecular weight 20000. Q-enzyme acts on native and synthetic amyloses to give products resembling amylopectin in terms of average unit chain length, degress of beta-amylolysis and iodine stain. The profiles of the unit chains of these synthetic products are, however, different from that of native amylopectin. Additional branch linkages are introduced by Q-enzyme into potato amylopectin, but the product bears no resemblance to phytoglycogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号