首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antigenic differences were revealed between the cell wall outer membrane lipopolysaccharides and the capsular high molecular weight bioglycans for a typical strain of the nitrogen-fixing rhizobacterium Azospirillum lipoferum Sp59b using antibodies prepared against the homologous lipopolysaccharide and lipopolysaccharide-protein complex. From the capsular lipopolysaccharide-protein and polysaccharide-lipid complexes of A. lipoferum Sp59b, polysaccharides were isolated and their structure was for the first time established in Azospirillum by monosaccharide analysis which included determination of the absolute configurations, methylation, O-deacetylation, and one- and two-dimensional NMR spectroscopy. The polysaccharides of the capsular complexes were shown to have identical structure of the branched tetrasaccharide repeating unit, which differs from the structure of the O-specific polysaccharide within the outer membrane lipopolysaccharide of this strain.  相似文献   

2.
The involvement of the carbohydrate components of the Azospirillum brasilense Sp245 capsules in bacterial protection from the action of extreme factors was investigated. The survival of encapsulated and non-encapsulated azospirilla exposed to elevated (46-48 degrees C) and below-freezing (-20 and -70 degrees C) temperatures, extreme pH values (2 and 10), and to drying was studied. High-molecular-weight carbohydrate-containing complexes (lipopolysaccharide-protein complex and polysaccharide-lipid complex) were isolated from the capsular material of azospirilla. It was shown that the addition of these complexes to the suspension of decapsulated cells before exposing them to extreme factors enhanced their survival rates by 15 to 51%.  相似文献   

3.
This paper reviews the results obtained in studies of the extracellular polysaccharides, lipopolysaccharide-protein complexes, polysaccharide-lipid complexes, lipopolysaccharides, and O-specific polysaccharides from bacteria of the genus Azospirillum. On the basis of present knowledge, the possible roles of the extracellular polysaccharides and polysaccharide-containing complexes of azospirilla in interaction with the roots of plants are discussed. Some pieces of evidence are considered in light of the lectin hypothesis originally proposed for the legume-Rhizobium symbiosis. In the context of these views of Azospirillum-cereal associative pairs, a key process at the early stages of the interaction is the specific reaction of cereal root lectins with the extracellular polysaccharide components, containing N-acetyl-d-glucosamine as part of their structure.  相似文献   

4.
Interaction of sulfated glycosaminoglycans with lectins   总被引:1,自引:0,他引:1  
The sulfated glycosaminoglycans, such as keratan sulfate and chitin sulfate having 3-hydroxy free N-acetyl-beta-D-glucosaminyl residues as constituents, reacted with wheat germ agglutinin and Solanum tuberosum agglutinin by sugar-specific interaction. The glycosaminoglycans showed different inhibitory activities to the hemagglutination reaction of these lectins and keratan sulfate and its modified products formed insoluble complexes with both of the lectins at pH 7.0 in physiological saline solutions (0.15 M NaCl). S. tuberosum agglutinin was precipitated within a particularly narrow concentration range of keratan sulfate, and the formation of a soluble complex was observed by gel chromatography. These interactions were specifically inhibited by N,N'-diacetylchitobiose but not by 2 M NaCl. The specific interactions of the glycosaminoglycans with S. tuberosum agglutinin were confirmed by their ultraviolet difference spectra with two peaks at 285 and 298 nm attributable to the tryptophan residues in the binding site of the agglutinin. It was also found that S. tuberosum agglutinin and wheat germ agglutinin have different binding specificities. The presence of sulfate groups in either keratan sulfate or chitin sulfate did not interfere with their specific interactions with S. tuberosum agglutinin as strongly as with wheat germ agglutinin. The N-acetylneuraminic acid residues in keratan sulfate were found to be receptor sites for wheat germ agglutinin but not for S. tuberosum agglutinin.  相似文献   

5.
Extracellular polysaccharides synthesized by Azospirillum brasilense and A. lipoferum were shown on agar plates and liquid flocculating cultures. The six strains used in this work expressed a mucoid phenotype, yielding positive calcofluor fluorescence under UV light. The calcofluor-binding polysaccharides were distributed between the capsular and exopolysaccharide fractions, suggesting exocellular localization. No calcofluor fluorescence was observed in residual cells after separation of the capsular and exopolysaccharide fractions. Cellulose content was significantly higher in flocculating than in nonflocculating cultures. Failure to induce flocculation by addition of cellulose (100 mg/ml) to nonflocculating cultures, together with the sensitivity of flocs to cellulase digestion, suggested that cellulose is involved in maintenance of floc stability. Different A. brasilense and A. lipoferum strains bound to a wheat lectin (fluorescein isothiocyanate-wheat germ agglutinin), indicating the occurrence of specific sugar-bearing receptors for wheat germ agglutinin on the cell surface. The biochemical specificity of the reaction was shown by hapten inhibition with N-acetyl-D-glucosamine. All six strains failed to recognize fluorescein isothiocyanate-soybean seed lectin under our experimental conditions. We conclude that azospirilla produce exocellular polysaccharides with calcofluor- and lectin-binding properties.  相似文献   

6.
Pendland  J. C.  Boucias  D. G. 《Mycopathologia》1984,87(3):141-148
Nomuraea rileyi is an entomogenous fungus infecting lepidopterous defoliators; host range of the pathogen varies according to strain. Identifying surface components of infectious stages of different strains of the fungus may be an important step in understanding host-parasite interactions. A variety of fluorescein and ferritin-conjugated lectins, including concanavalin A, peanut, soybean, winged pea and wheat germ were used to investigate surface components on germ tube and hyphal body walls from two strains (FL 74, FL 78) of N. rileyi. Binding was observed on outer wall layers when both Con A and wheat germ agglutinin conjugates were tested. There was no apparent difference in binding between the two strains or between germ tubes and hyphal bodies. These results indicate the presence of mannose (and/or glucose) residues (Con A specifity) and N-acetyl-D-glucosamine residues (wheat germ agglutinin specifity) on outer wall surfaces. Extracellular sheath material especially noticeable on germ tubes from the FL 74 strain was not labeled by any of the lectins tested, but was well stained with ruthenium red, indicating the presence of polysaccharides.Florida Agricultural Experiment Station Journal Series No. 4764.  相似文献   

7.
A short exposure of human skin fibroblasts to Concanavalin A and wheat germ agglutinin led to an intra- and extracellular accumulation of sulfated glycosaminoglycans. The intracellular accumulation was caused by an impaired degradation of sulfated glycosaminoglycans. The increase of extracellular and cell surface associated 35S-labeled proteoglycans could be ascribed to a lectin-mediated inhibition of endocytosis of these polysaccharides. Results obtained with mono- and divalent Concanavalin A derivatives were in agreement with the view that lectins inhibit endocytosis of sulfated proteoglycans by binding to the cell surface receptors specific for these polysaccharides. Proteoglycans secreted by fibroblasts formed precipitable complexes with Concanavalin A. Complex formation reduced markedly the uptake of the proteoglycan. All effects on glycosaminoglycan metabolism mediated by Concanavalin A and wheat germ agglutinin could be prevented by methyl alpha-D-mannoside and N-acetylglucoseamine, respectively.  相似文献   

8.
Abstract Staphylococcus saprophyticus was shown to be agglutinated by wheat germ agglutinin, wheat germ agglutinin-biotin and bovine serum albumin- p -aninophenyl- N -acetyl-β-d-glucosaminide (GlcNAc-BSA), and sheep red blood cells. In these agglutinations, filamentous or amorphous structures radiating from the surface of S. saprophyticus were demonstrated by electron microscope observation. Cytochemical analyses of the agglutination revealed the binding sites of wheat germ agglutinin in S. saprophyticus and the binding sites of GlcNAc in the sheep red blood cells and S. saprophyticus . Since GlcNAc-BSA contains N -acetylglucosamine to which wheat germ agglutinin can bind, it is most likely that an interaction between a wheat germ agglutinin-bindable substance in S. saprophyticus and an N -acetylglucosamine-bindable substance in sheep red blood cells is involved in the agglutination.  相似文献   

9.
Abstract Wheat germ agglutinin was found to increase glutamine synthetase and nitrogenase activities and excretion of N2-fixation product (NH4+) in Azospirillum brasilense Sp 245. Each effect had a similar pattern and correlated well with each other. They were dynamic, had maxima in the middle of the exponential phase of growth, and were due to N-acetyl- d -glucosamine specificity of wheat germ agglutinin, since its preincubation with 10% N-acetyl- d -glucosamine caused the disappearance of the effects. When wheat germ agglutinin was replaced with Ulex europaeus agglutinin II possessing the same carbohydrate binding specificity all the above effects remained, replacing wheat germ agglutinin with concanavalin A with a different sugar specificity, or with bovine serum albumin led to their disappearance.  相似文献   

10.
Treatment of transformed Py3T3, SV101-3T3, and L1210 cells, as well as mitotic and Pronase-treated untransformed 3T3 cells, with the polyene antibiotics filipin, nystatin, and amphotericin B inhibited agglutination by wheat germ agglutinin. The effect of polyene antibiotic treatment was lectin and cell specific. Concanavalin A induced agglutination was not inhibited, wheat germ agglutination induced agglutination of untransformed 3T3 interphase cells was not influenced, and other aggregation phenomena, including those of erythrocytes with blood group specific antibodies or divalent cations, were unaffected by polyene treatments. This suggests that the formation of polyene-cholesterol complexes in transformed and erythrocyte cell membranes may specifically affect wheat germ agglutinin receptors and/or secondary events necessary for wheat germ agglutinin induced agglutination. Fluorescence studies of membrane filipin-cholesterol complexes showed that pretreating the cells with wheat germ agglutinin, but not concanavalin A, perturbed the fluorescence properties of filipin. Electron spin resonance studies with spin-labeled fatty acids revealed at best only a slight decrease in fatty acyl chain flexibility following filipin treatment. These studies indicate that there are not only quantitative differences between the agglutinability of transformed and untransformed cells with wheat germ agglutinin but that qualitative differences exist as well.  相似文献   

11.
Whole cell extracts of 10 clones of bloodstream forms of African trypanosomes representing two strains of Trypanosoma brucei gambiense, one strain of T. b. rhodesiense and one strain of T. b. brucei were fractionated on sodium dodecyl sulfate-polyacrylamide gels, electrophoretically transferred to nitrocellulose paper, and probed with horseradish peroxidase conjugated lectins to detect glycoproteins. Variant specific glycoproteins of all 10 clones bound peroxidase labeled concanavalin A, but peroxidase labeled wheat germ agglutinin bound to the variant specific glycoproteins of only 3 of the 10 clones examined. In addition, 22 other glycoproteins expressed in common by all clones bound peroxidase labeled concanavalin A; 19 common glycoproteins bound peroxidase labeled wheat germ agglutinin. Lectin binding to transferred glycoproteins was specifically inhibited by appropriate monosaccharides, alpha-methyl mannoside for concanavalin A and N-acetyl glucosamine for wheat germ agglutinin. Prior incubation of blots in endo-beta-N-acetylglucosaminidase H eliminated binding of peroxidase-labeled concanavalin A to most of the 22 common glycoproteins. Two glycoproteins, designated Gp 81 and Gp 110, were the major Endoglycosidase H resistant components. Endoglycosidase H treatment also reduced binding of peroxidase labeled concanavalin A to the variant specific glycoproteins of 7 clones. The variant specific glycoproteins from the 3 clones that bound peroxidase labeled concanavalin A following enzyme treatment were those that bound peroxidase labeled wheat germ agglutinin. These results show that African trypanosomes express a greater number of glycoproteins than has been reported previously and that only a limited number of these glycoproteins bear Endoglycosidase H resistant oligosaccharides.  相似文献   

12.
A short exposure of human skin fibroblasts to Concanavallin A and wheat germ agglutinin led to an intra- and extracellular accumulation of sulfated glycosaminoglycans. The intracellular accumulation was caused by an impaired degradation of sulfated glycosaminoglycans. The increase of extracellular and cell surface associated 35S-labeled proteoglycans could be ascribed to a lectin-mediated inhibition of endocytosis of these polysaccharides. Results obtained with mono- and divalent Concanavalin A derivatives were in aggreement with the view that lectins inhibit endocytosis of sulfated proteoglycans by binding to the cell surface receptors specific for these polysaccharides. Proteoglycans secreted by fibroblasts formed predipitable complexes with Concanavalin A. Complex formation reduced markedly the uptake of the proteoglycan. All effects on glycosaminoglycan metabolism mediated by Concanavalin A and wheat germ agglutin could be prevented by methyl α-D-mannoside and N-acetylglucosamine, respectively.  相似文献   

13.
Maintenance of pH 7.0 during the fermentation period favors accumulation of high molecular weight polysaccharide-containing components called lipopolysaccharide–protein and polysaccharide–lipid complexes in the capsules and culture medium. Increased pH of the culture medium to 8.0 reduced the period of exponential growth and the yield of polysaccharide-containing complexes as compared to optimal conditions. Maintenance of pH 5.5 suppressed the culture growth and polysaccharide production. The polysaccharide–lipid complexes obtained when pH was stabilized at the level of 7.0–8.0 had relatively low molecular weights and included only acidic polysaccharides. The use of potassium gluconate instead of sodium malate as a source of carbon in the culture medium changed the polysaccharide composition and increased the content of glucosamine, which increased the affinity of polysaccharides for wheat germ agglutinin. Prolongation of Azospirillum cultivation to five days introduced new glucose-containing polysaccharide components in the capsule.  相似文献   

14.
Wheat germ agglutinin induced aggregation and secretion of fresh platelets. Aggregation, but not secretion of serotonin by platelets in plasma, by the lectin was inhibited by 5 mM EDTA. Further, the lectin-induced stimulation of fresh platelets was blocked by prostaglandin E1. Thus, this lectin stimulates platelets by a mechanism which closely mimics thrombin activation and is independent of intercellular crosslinking. Lentil lectin did not stimulate platelets. Each platelet contained about 6 . 10(-5) binding sites for the lectins with an apparent dissociation constant of 3.0 . 10(-7) M. Wheat germ agglutinin, which binds mainly to glycoprotein I (Mr 150 000), increased the subsequent binding of thrombin to fixed platelets while lentil lectin was without effect. It appears that thrombin and wheat germ agglutinin bind to independent but interacting sites. Wheat germ agglutinin, but neither thrombin nor lentil lectin, inhibited the agglutination of platelets by ristocetin. Further, rat platelets were not aggregated by either ristocetin or wheat germ agglutinin. It appears that the interaction sites of ristocetin and wheat germ agglutinin on platelets are overlapping.  相似文献   

15.
The binding of fluorescently labelled carbohydrates to concanavalin A and wheat germ agglutinin was studied at equilibrium and by the stopped-flow and temperature jump relaxation methods. Ligand were mainly die 4-methylumbelliferyl glycosides of α (1 → 2)-linked manno-oligosaccharides and of β (1 → 4)-linked chito oligosaccharides as limited homologous series. They offer distinct advantages, parti cularly for kinetic studies.Enthalpie and kinetic considerations suggest that concanavalin A specifically binds a single mannopyranosyl group in α (1 →2)-linked manno-oligosaccharides. This occurs preferentially at the non-reducing end. Glycosylation of a carbohydrate withe.g. an aryl group does not afect die binding kinetics and for all carbohydrates the association rate is comparable but relatively slow, which indicates that a common process is involved in the binding of all carbohydrates to concanavalin A. The affinity of a carbohydrate for concanavalin A is determined by the dissociation-rate parameter, resulting in a longer residence time for a better ligand.Interaction of chito-oligosaccharides with wheat germ agglutinin is complex. With the larger members of the 4-methylumbelliferyl chito-oligosaccharides, binding studies were only possible at low fractional saturation to avoid formation of unsoluble complexes. The binding kinetics of wheat germ agglutinin are faster than with concanavalin A and are consistent with a wheat germ agglutinin binding region composed of two adjacent subsites. For binding of the monoside as well as the bioside, two consistent kinetic models apply. They have common that for each ligand there exist two complexes with comparable population.  相似文献   

16.
Membrane halves of boar sperm flagella were produced by freeze-fracture and labeled in situ with concanavalin A and wheat germ agglutinin; the lectins were visualized with protein-gold complexes. Concanavalin A and wheat germ agglutinin binding sites partition with both protoplasmic and exoplasmic halves of the membrane. A high density of lectin marking was found on protoplasmic membrane halves; we conclude that the label corresponds to transmembrane glycoproteins that, on freeze-fracture, are dragged across the outer (exoplasmic) half of the phospholipid bilayer. Our demonstration of numerous transmembrane proteins in sperm flagella offers the structural setting for previous models on flagellar surface motility that postulate accessibility of motile membrane components to the submembranous cytoskeleton.  相似文献   

17.
The structural identity of the repeated unit in O-specific polysaccharides (OPSs) present in the outer membrane of strain SR75 of the bacterium Azospirillum brasilense, isolated from wheat rhizosphere in Saratov oblast, and the OPSs of previously studied A. brasilense strain Sp245, isolated from surface-sterilized wheat roots in Brazil, has been demonstrated. Plasmid profiles, DNA restriction, and hybridization assays suggested that A. brasilense strains SR75 and Sp245 have different genomic structures. It was shown that homologous lps loci of both strains was localized in their plasmid DNA. This fact allows us to state that, despite their different origin, the development of the strains studied was convergent. Presumably, the habitation of these bacteria in similar ecological niches influenced this process in many respects.  相似文献   

18.
Yegorenkova  I.V.  Konnova  S.A.  Sachuk  V.N.  Ignatov  V.V. 《Plant and Soil》2001,231(2):275-282
The dynamics of adsorption of the nitrogen-fixing soil bacteria Azospirillum brasilense 75 and 80 (isolated from soil samples collected in Saratov Oblast, southern Russia) and A. brasilense Sp245 to the roots of seedlings of common spring wheat was studied in relation to inoculum size, period of incubation with the roots and bacterial-growth phase. The number of root-attached cells increased with increasing size of inoculum and time of contact. The saturation of root-surface adsorption was observed by 24 h of co-incubation for A. brasilense 75, by 6 h for A. brasilense 80, and by 3 h for A. brasilense Sp245. The firmness of bacterial–root attachment increased after extended co-incubation. Differences in the adsorption kinetics of the azospirilla were found that were associated with bacterial-growth phases. Azospirilla attached to the roots of their host cultivar more actively than they did to the roots of a non-host cultivar. Adsorption was partially inhibited when the roots were treated with N-acetyl-D-glucosamine. Maximal inhibition occurred after a 3-h exposure of the roots to the bacteria. Root-hair deformation induced with polysaccharide-containing complexes from the Azospirillum capsular material was inhibited by N-acetyl-D-glucosamine and chitotriose, specific haptens of wheat germ agglutinin. A possible mechanism of the mutual influence of bacteria and plants may involve key roles of wheat germ agglutinin, present on the roots, and the polysaccharide-containing components of the Azospirillum capsule.  相似文献   

19.
Low concentrations of wheat germ agglutinin (4 micrograms/ml) have been shown to act synergistically to induce platelet aggregation with epinephrine, collagen, arachidonate and ionophore A23187. Aggregation ceased on the addition of the haptenic sugar N-acetylglucosamine at any time following the onset of aggregation with these agonists and a small degree of disaggregation was observed during the reversible first wave with the biphasic aggregating agents epinephrine and ADP. Cyclooxygenase inhibitors such as indomethacin and aspirin blocked the second wave of aggregation with the biphasic aggregating agents epinephrine and ADP but a synergistic response continued to be shown with the first wave in the presence of these inhibitors. Release of [14C]serotonin and the mobilization of [3H]arachidonate by epinephrine and collagen were markedly stimulated in the presence of wheat germ agglutinin but there was no increase of either radiolabel in the case of ADP. Platelet shape change, but not aggregation, occurred with low levels of wheat germ agglutinin and the synergistic response with ADP, collagen or ionophore A23187 occurred without further shape change. Wheat germ agglutinin did not affect the basal or stimulated levels of cyclic AMP. The membrane fluidity of platelets was not affected by the lectin or by thrombin as shown by the lack of change in fluorescence polarization with diphenylhexatriene. It is suggested that the binding of wheat germ agglutinin to the platelet surface induces platelet activation by mechanisms similar to those of other agonists and that it may affect the distribution of membrane-bound Ca2+ by a reversible perturbation of the platelet membrane.  相似文献   

20.
The purified porcine recpptor for the intrinsic factor-cobalamin complex bound to concanavalin A, lentil lectin and wheat germ lectin covalently coupled to Sepharose and was eluted with the corresponding soluble sugars. In contrast, human intrinsic factor bound efficiently to concanavalin A, to some extent to lentil lectin, but only slightly to wheat germ agglutinin. The binding of IF-Cbl to the receptor was inhibited when the receptor was pre-incubated with soluble wheat germ aglutinin, with an inhibition constant estimated to be 1.9 mol/l. After transfer of the purified receptor from SDS-PAGE to Immobilon, ligand blotting of the purified receptor with iodinated lectin showed that concanavalin A and lentil lectin bound to three (75, 56 and 43 kDa) components but that wheat germ agglutinin bound only to the 75 kDa component. These results showed that the subunit of the receptor could bind to wheat germ agglutinin, resulting in an inhibition of its binding with intrinsic factor. Both binding sites of intrinsic factor and of wheat germ agglutinin could be located near to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号