首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.

Background

Alzheimer’s disease (AD) is characterized by progressive memory loss and impaired cognitive function. Early-onset familial forms of the disease (FAD) are caused by inheritance of mutant genes encoding presenilin 1 (PS1) variants. We have demonstrated that prion promoter (PrP)-driven expression of human FAD-linked PS1 variants in mice leads to impairments in environmental enrichment (EE)-induced adult hippocampal neural progenitor cell (AHNPC) proliferation and neuronal differentiation, and have provided evidence that accessory cells in the hippocampal niche expressing PS1 variants may modulate AHNPC phenotypes, in vivo. While of significant interest, these latter studies relied on transgenic mice that express human PS1 variant transgenes ubiquitously and at high levels, and the consequences of wild type or mutant PS1 expressed under physiologically relevant levels on EE-mediated AHNPC phenotypes has not yet been tested.

Results

To assess the impact of mutant PS1 on EE-induced AHNPC phenotypes when expressed under physiological levels, we exposed adult mice that constitutively express the PSEN1 M146V mutation driven by the endogenous PSEN1 promoter (PS1 M146V “knock-in” (KI) mice) to standard or EE-housed conditions. We show that in comparison to wild type PS1 mice, AHNPCs in mice carrying homozygous (PS1 M146V/M146V ) or heterozygous (PS1 M146V/+ ) M146V mutant alleles fail to exhibit EE-induced proliferation and commitment towards neurogenic lineages. More importantly, we report that the survival of newborn progenitors are diminished in PS1 M146V KI mice exposed to EE-conditions compared to respective EE wild type controls.

Conclusions

Our findings reveal that expression at physiological levels achieved by a single PS1 M146V allele is sufficient to impair EE-induced AHNPC proliferation, survival and neuronal differentiation, in vivo. These results and our finding that microglia expressing a single PS1 M146V allele impairs the proliferation of wild type AHNPCs in vitro argue that expression of mutant PS1 in the AHNPC niche impairs AHNPCs phenotypes in a dominant, non-cell autonomous manner.
  相似文献   

4.
5.
6.
7.
《The Journal of cell biology》1994,127(6):1743-1754
Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c- MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU- GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.  相似文献   

8.
9.
The expression of c-myc was analyzed in murine and human erythroblasts throughout their differentiation in vitro into reticulocytes. The murine cells were splenic erythroblasts from animals infected with the anemia strain of Friend virus (FVA cells). In FVA cells cultured without EPO, the c-myc mRNA and protein levels decrease sharply within 3 to 4 h, showing that continual EPO stimulation is required to maintain c-myc expression. When cultured with EPO, the c-myc mRNA level of FVA cells is raised within 30 min of exposure. The c-myc mRNA and protein reach maxima at 1 to 3 h, then decline slowly to very low levels by 18 h. In contrast, c-fos and c-jun mRNA levels are not regulated by EPO in FVA cells. The human cells analyzed were colony-forming units-erythroid, CFU-E, derived in vitro by the culture of peripheral blood burst-forming units-erythroid (BFU-E). When grown in EPO and insulin-like growth factor 1 (IGF-1) these cells differentiate into reticulocytes over 6 days rather than the 2 days required for murine cells, but the c-myc mRNA kinetics and response to EPO parallel those of mouse cells at similar stages of differentiation. Both IGF-1 and c-kit ligand (SCF) cause an additive increase in c-myc mRNA in human CFU-E in conjunction with EPO. These additive effects suggest that EPO, IGF-1, and SCF affect c-myc mRNA accumulation by distinct mechanisms. Addition of an antisense oligonucleotide to c-myc in cultures of human CFU-E specifically inhibited cell proliferation but did not affect erythroid cell differentiation or apoptosis. When human cells were grown in high SCF concentrations, an environment which enhances proliferation and retards differentiation, antisense oligonucleotide to c-myc strongly inhibited proliferation, but such inhibition did not induce differentiation. This latter result indicates that differentiation requires signals other than depression of c-myc and resultant depression of proliferation. © 1996 Wiley-Liss, Inc.  相似文献   

10.
11.
12.
We have shown previously that activation of STAT1 contributes to the pathogenesis of Wilms tumor. This neoplasm caricatures metanephric development and is believed to originate from embryonic renal mesenchymal progenitors that lose their ability to undergo mesenchymal–epithelial transition (MET). Therefore, we hypothesized that STAT1 is also activated and functional during metanephric development. Here we have demonstrated that both STAT1 and STAT3 are activated during normal development of the embryonic kidney. Furthermore, activation of STAT1 stimulated the proliferation of metanephric mesenchymal cells, but it prevented MET and tubulogenesis induced by leukemia inhibitory factor, which preferentially activates STAT3. Consistent with its negative regulation of metanephric mesenchymal differentiation, inhibition of STAT1 activation with protein kinase CK2 inhibitor TBB or RNAi-mediated knockdown of STAT1 promoted differentiation of metanephric progenitors and abolished the effect of cytokine-induced STAT1 activation in these cells. Additionally, a cell-permeable peptide that inhibits STAT1-mediated transactivation by targeting the STAT1 N-domain also blocked cytokine-induced STAT1-dependent proliferation in metanephric progenitors and promoted LIF-induced MET and tubulogenesis. Finally, the STAT1 peptide inhibitor caused the down regulation of survival/anti-apoptotic factors, Mcl-1 and Hsp-27, and induced apoptosis in renal tumor cells with constitutively active STAT1, indicating that STAT1 is required for these cells to survive. These findings show that both metanephric progenitors and renal tumor cells utilize a STAT1-dependent mechanism for growth or survival.  相似文献   

13.
14.
15.
16.
17.
A Bauer  W Mikulits  G Lagger  G Stengl  G Brosch    H Beug 《The EMBO journal》1998,17(15):4291-4303
The avian erythroblastosis virus (AEV) oncoprotein v-ErbA represents a mutated, oncogenic thyroid hormone receptor alpha (c-ErbA/ TRalpha). v-ErbA cooperates with the stem cell factor-activated, endogenous receptor tyrosine kinase c-Kit to induce self-renewal and to arrest differentiation of primary avian erythroblasts, the AEV transformation target cells. In this cooperation, v-ErbA substitutes for endogenous steroid hormone receptor function required for sustained proliferation of non-transformed erythroid progenitors. In this paper, we propose a novel concept of how v-ErbA transforms erythroblasts. Using culture media strictly depleted from thyroid hormone (T3) and retinoids, the ligands for c-ErbA/TRalpha and its co-receptor RXR, we show that overexpressed, unliganded c-ErbA/ TRalpha closely resembles v-ErbA in its activity on primary erythroblasts. In cooperation with ligand-activated c-Kit, c-ErbA/ TRalpha causes steroid-independent, long-term proliferation and tightly blocks differentiation. Activation of c-ErbA/ TRalpha by physiological T3 levels causes the loss of self-renewal capacity and induces synchronous, terminal differentiation under otherwise identical conditions. This T3-induced switch in erythroid progenitor development is correlated with a decrease of c-ErbA-associated histone deacetylase activity. Our results suggest that the crucial role of the mutations activating v-erbA as an oncogene is to 'freeze' c-ErbA/ TRalpha in its non-liganded, repressive conformation and to facilitate its overexpression.  相似文献   

18.
Stem cell factor (SCF) delays differentiation and enhances the expansion of erythroid progenitors. Previously, we performed expression-profiling experiments to link signaling pathways to target genes using polysome-bound mRNA. SCF-induced phosphoinositide-3-kinase (PI3K) appeared to control polysome recruitment of specific mRNAs associated with neoplastic transformation. To evaluate the role of mRNA translation in the regulation of expansion versus differentiation of erythroid progenitors, we examined the function of the eukaryote initiation factor 4E (eIF4E) in these cells. SCF induced a rapid and complete phosphorylation of eIF4E-binding protein (4E-BP). Overexpression of eIF4E did not induce factor-independent growth but specifically impaired differentiation into mature erythrocytes. Overexpression of eIF4E rendered polysome recruitment of mRNAs with structured 5' untranslated regions largely independent of growth factor and resistant to the PI3K inhibitor LY294002. In addition, overexpression of eIF4E rendered progenitors insensitive to the differentiation-inducing effect of LY294002, indicating that control of mRNA translation is a major pathway downstream of PI3K in the regulation of progenitor expansion.  相似文献   

19.
20.
To determine the role of Thy-1 antigen in murine hematopoietic differentiation, bone marrow was treated with anti-Thy-1.2 antibody and complement or complement alone. Growth of immature hematopoietic progenitors, erythroid burst-forming units (BFU-E), and granulocyte/macrophage colony-forming units (CFU-GM) was greatly reduced following antibody and complement treatment and was not restored by mitogen-stimulated spleen cell supernatants. In contrast, more mature erythroid and myeloid progenitors, the erythroid colony-forming unit (CFU-E) and the macrophage progenitor stimulated by L-cell-conditioned media (LCM), were spared by anti-Thy-1.2 antibody and complement treatment. Here, to separate the effects of anti-Thy-1.2 antibody treatment on accessory cells from those on progenitors, splenic T cells and thymocytes were added to treated marrow at ratios of up to 200%. Growth of BFU-E and CFU-GM was not restored. To more precisely replace required accessory cells, male complement-treated marrow was cocultured with female anti-Thy-1.2 antibody and complement-treated marrow. Even marrow cells failed to restore female BFU-E and CFU-GM growth. Fluorescent-activated cell sorting (FACS) and immune sheep red cell rosetting with anti-Thy-1.2-labeled marrow were then performed to determine if immature hematopoietic progenitors bear Thy-1.2. These techniques revealed enrichment of BFU-E and CFU-GM in the Thy-1.2-positive fraction, demonstrating the presence of Thy-1.2 on early murine hematopoietic progenitors. CFU-E and CFU-M were present in the Thy-1.2-negative fraction following FACS separation. These data demonstrate that Thy-1.2 is a differentiation antigen, present on at least some murine BFU-E and CFU-GM and lost as they mature to CFU-E and CFU-M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号