首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro differentiation of ES cells towards a hematopoietic cell fate is useful when studying cell populations that are difficult to access in vivo and for characterizing the earliest genes involved in hematopoiesis, without having to deal with embryonic lethalities. The ES/OP9 co-culture system was originally designed to produce hematopoietic progeny, without the over production of macrophages, as the OP9 stromal cell line is derived from the calvaria of osteopetrosis mutant mice that lack functional M-CSF. The in vitro ES/OP9 co-culture system can be used in order to recapitulate early hematopoietic development. When cultured on OP9 stromal cells, ES cells differentiate into Flk-1+ hemangioblasts, hematopoietic progenitors, and finally mature, terminally differentiated lineages. The standard ES/OP9 co-culture protocol entails the placement of ES cells onto a confluent layer of OP9 cells; as well as, periodic replating steps in order to remove old, contaminating OP9 cells. Furthermore, current protocols involve evaluating only the hematopoietic cells found in suspension and are not optimized for evaluation of ES-derived progeny at each day of differentiation. However, with replating steps and the harvesting of only suspension cells one potentially misses a large portion of ES-derived progeny and developing hematopoietic cells. This issue becomes important to address when trying to characterize hematopoietic defects associated with knockout ES lines. Here we describe a modified ES/mStrawberry OP9 co-culture, which allows for the elimination of contaminating OP9 cells from downstream assays. This method allows for the complete evaluation of all ES-derived progeny at all days of co-culture, resulting in a hematopoietic differentiation pattern, which more directly corresponds to the hematopoietic differentiation pattern observed within the embryo.  相似文献   

2.
3.
4.
Leukemogenesis caused by incapacitated GATA-1 function   总被引:2,自引:0,他引:2       下载免费PDF全文
GATA-1 is essential for the development of erythroid and megakaryocytic lineages. We found that GATA-1 gene knockdown female (GATA-1.05/X) mice frequently develop a hematopoietic disorder resembling myelodysplastic syndrome that is characterized by the accumulation of progenitors expressing low levels of GATA-1. In this study, we demonstrate that GATA-1.05/X mice suffer from two distinct types of acute leukemia, an early-onset c-Kit-positive nonlymphoid leukemia and a late-onset B-lymphocytic leukemia. Since GATA-1 is an X chromosome gene, two types of hematopoietic cells reside within heterozygous GATA-1 knockdown mice, bearing either an active wild-type GATA-1 allele or an active mutant GATA-1.05 allele. In the hematopoietic progenitors with the latter allele, low-level GATA-1 expression is sufficient to support survival and proliferation but not differentiation, leading to the accumulation of progenitors that are easily targeted by oncogenic stimuli. Since such leukemia has not been observed in GATA-1-null/X mutant mice, we conclude that the residual GATA-1 activity in the knockdown mice contributes to the development of the malignancy. This de novo model recapitulates the acute crisis found in preleukemic conditions in humans.  相似文献   

5.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

6.
Embryonic stem (ES) cells differentiate into multiple hematopoietic lineages during embryoid body formation in vitro, but to date, an ES-derived hematopoietic stem cell has not been identified and subjected to clonal analysis in a manner comparable with hematopoietic stem cells from adult bone marrow. As the chronic myeloid leukemia-associated BCR/ABL oncogene endows the adult hematopoietic stem cell with clonal dominance without inhibiting pluripotent lymphoid and myeloid differentiation, we have used BCR/ABL as a tool to enable engraftment and clonal analysis. We show that embryoid body-derived hematopoietic progenitors expressing BCR/ABL maintain a primitive hematopoietic blast stage of differentiation and generate only primitive erythroid cell types in vitro. These cells can be cloned, and when injected into irradiated adult mice, they differentiate into multiple myeloid cell types as well as T and B lymphocytes. While the injected cells express embryonic (beta-H1) globin, donor-derived erythroid cells in the recipient express only adult (beta-major) globin, suggesting that these cells undergo globin gene switching and developmental maturation in vivo. These data demonstrate that an embryonic hematopoietic stem cell arises in vitro during ES cell differentiation that constitutes a common progenitor for embryonic erythroid and definitive lymphoid-myeloid hematopoiesis.  相似文献   

7.
8.
9.
10.
11.
Optimal production of red cells in vivo requires collaboration between c-Kit, erythropoietin receptor (Epo-R), and GATA-1. However, the mechanism(s) of collaboration remain unclear. Utilizing an embryonic stem cell-derived erythroid progenitor cell line from mice deficient in GATA-1, we have examined the role of c-Kit and Epo-R in erythroid cell proliferation, survival, and differentiation. In the absence of GATA-1, we demonstrate an essential role for c-Kit in survival and proliferation of erythroid progenitors via the regulation of Bcl-2 expression. In addition, we demonstrate that Epo-R and Stat5 are regulated by a second, novel mechanism. We demonstrate that c-Kit stimulation by stem cell factor is essential for the maintenance of Epo-R and Stat5 protein expression, which results in significantly enhanced Bcl-x(L) induction and survival of erythroid progenitors in response to Epo stimulation. Restoration of GATA-1 function results in terminal erythroid maturation and up-regulation of Epo-R and Bcl-x(L) expression, leading also to significantly enhanced survival of terminally differentiating erythroid progenitors in the presence of only Epo. These results demonstrate that c-Kit and Epo-R have unique role(s) during distinct phases of erythroid maturation, and both stem cell factor and Epo contribute to the regulation of the Epo-R-Stat5-Bcl-x(L) pathway to ensure optimal survival, proliferation, and differentiation of erythroid progenitors.  相似文献   

12.
13.
Erythropoietic stress occurs under conditions of tissular hypoxia, such as anemia. Functional relationships between erythroid bone marrow (BM) proliferation, differentiation, the expression of survival and apoptotic related proteins, as well as the features of the BM microenvironment upon acute anemic stress, are not fully elucidated. To achieve this aim, CF-1 Swiss mice were injected with a single dose of 5-fluorouracil (5-FU, 150 mg/kg ip) and a multiparametric analysis was conducted for 20 days. Apoptosis (TUNEL assay), BM architecture organization (scanning electronic microscopy), proliferation (DNA assay), differentiation (clonogenic cultures), expression of survival erythroid related proteins (EPO-R, GATA-1, Bcl-xL) as well as the expression of apoptotic- related proteins (Bax, activated Caspase-3) by Western blotting, were evaluated. Experimental data showed that apoptosis, arrest of cell proliferation and disruptions of BM architecture were maximal within the first period of acute stress (1-3 days). Bax and caspase-3 overexpressions were also coincident during this acute period. Moreover, from day 5 upon drug challenge BM responds to acute stress through the EPO-EPO-R system, prompting expressions of GATA-1 and Bcl-xL. Erythroid proliferation rates and red-cell-committed progenitors enhanced in a coordinated way to restore the size and function of the red cell compartment. A second overexpression wave of active caspase-3 was noticed during stress recovery. Together, these results indicate that in response to acute stress a dramatic increase in CFU-E (erythroid colony forming units) population is concomitant with upregulation of EPO-R, GATA-1 and Bcl-xL in the BM erythroid compartment, and that these concurrent processes are crucial for acquiring proper erythroid cell functionality without delayed response to tissular hypoxia.  相似文献   

14.
It is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a robust and scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, stirred 2 L bioreactor following inoculation with a single cell suspension of mouse ES cells. Utilizing a pitched-blade-turbine, parameters for optimal cell expansion as well as efficient ES cell differentiation were established. Optimization of stirring conditions resulted in the generation of high-density suspension cultures containing 12.5 x 10(6) cells/mL after 9 days of differentiation. Approximately 30%-40% of the EBs formed in this process vigorously contracted, indicating robust cardiomyogenic induction. An ES cell clone carrying a recombinant DNA molecule comprised of the cardiomyocyte-restricted alpha myosin heavy chain (alphaMHC) promoter and a neomycin resistance gene was used to establish the utility of this bioprocess to efficiently generate ES-derived cardiomyocytes. The genetically engineered ES cells were cultured directly in the stirred bioreactor for 9 days, followed by antibiotic treatment for another 9 days. The protocol resulted in the generation of essentially pure cardiomyocyte cultures, with a total yield of 1.28 x 10(9) cells in a single 2 L bioreactor run. This study thus provides an important step towards the large-scale generation of ES-derived cells for therapeutic and industrial applications.  相似文献   

15.
BP1 is a negative modulator of definitive erythropoiesis   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
18.
19.
GATA-1 is essential for the generation of the erythroid, megakaryocytic, eosinophilic and mast cell lineages. It acts as an activator and repressor of different target genes, for example, in erythroid cells it represses cell proliferation and early hematopoietic genes while activating erythroid genes, yet it is not clear how both of these functions are mediated. Using a biotinylation tagging/proteomics approach in erythroid cells, we describe distinct GATA-1 interactions with the essential hematopoietic factor Gfi-1b, the repressive MeCP1 complex and the chromatin remodeling ACF/WCRF complex, in addition to the known GATA-1/FOG-1 and GATA-1/TAL-1 complexes. Importantly, we show that FOG-1 mediates GATA-1 interactions with the MeCP1 complex, thus providing an explanation for the overlapping functions of these two factors in erythropoiesis. We also show that subsets of GATA-1 gene targets are bound in vivo by distinct complexes, thus linking specific GATA-1 partners to distinct aspects of its functions. Based on these findings, we suggest a model for the different roles of GATA-1 in erythroid differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号