首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Individual leaves of potato (Solanum tuberosum L. W729R), a C3 plant, were subjected to various irradiances (400-700 nm), CO2 levels, and temperatures in a controlled-environment chamber. As irradiance increased, stomatal and mesophyll resistance exerted a strong and some-what paralleled regulation of photosynthesis as both showed a similar decrease reaching a minimum at about 85 neinsteins·cm−2·sec−1 (about ½ of full sunlight). Also, there was a proportional hyperbolic increase in transpiration and photosynthesis with increasing irradiance up to 85 neinsteins·cm−2·sec−1. These results contrast with many C3 plants that have a near full opening of stomata at much less light than is required for saturation of photosynthesis.  相似文献   

3.
Photosynthesis, photorespiration and nitrogen metabolism   总被引:16,自引:6,他引:10  
Abstract. The ATP and reduced ferredoxin generated in photosynthetic reactions in the chloroplast are utilized for a large number of reactions other than CO2-fixation. Quantitatively the most important reaction is the reassimilation of ammonia liberated during photorespiration in C3 plants via the glutamate synthase cycle. Chloroplasts are also able to reduce nitrite to ammonia, sulphate to sulphide, and synthesize a number of amino acids. The amino acids essential for human nutrition are all synthesized in the chloroplast and evidence is presented to suggest that they may be the sole site of such biosynthetic reactions.  相似文献   

4.
Visible light is the basic energetic driver of plant biomass production through photosynthesis. The constantly fluctuating availability of light and other environmental factors means that the photosynthetic apparatus must be able to operate in a dynamic fashion appropriate to the prevailing conditions. Dynamic regulation is achieved through an array of homeostatic control mechanisms that both respond to and influence cellular energy and reductant status. In addition, light availability and quality are continuously monitored by plants through photoreceptors. Outside the laboratory growth room, it is within the context of complex changes in energy and signalling status that plants must regulate pathways to deal with biotic challenges, and this can be influenced by changes in the highly energetic photosynthetic pathways and in the turnover of the photosynthetic machinery. Because of this, defence responses are neither simple nor easily predictable, but rather conditioned by the nutritional and signalling status of the plant cell. This review discusses recent data and emerging concepts of how recognized defence pathways interact with and are influenced by light-dependent processes. Particular emphasis is placed on the potential roles of the chloroplast, photorespiration, and photoreceptor-associated pathways in regulating the outcome of interactions between plants and pathogenic organisms.  相似文献   

5.
6.
7.
Photosynthesis in Wood   总被引:2,自引:0,他引:2  
The capacity for photosynthesis, measured as light enhanced 14CO2 uptake, was demonstrated in the wood of first and fourth year twigs of Betula pendula Roth, Populus tremuloides Michx., Syringa vulgaris L., and Tilia Americana L, but not in Gleditschia triacanthos L. In Betula and Syringa, but not in the others, photosynthesis occurred in the secondary xylem as well as in the primary xylem.  相似文献   

8.
Photosynthesis     

Book Review

PhotosynthesisA. Amesz (Ed)., Amsterdam: Elsevier 1987. 355 pages. £57.27. ISBN 0-444-80864-7  相似文献   

9.
SHEEHY  J. E. 《Annals of botany》1977,41(3):593-604
The rates of canopy and individual leaf photosynthesis and 14Cdistribution for three temperate forage grasses Lolium perennecv. S24, L. perenne cv. Reveille and Festuc'a arundinacea cv.SI70 were determined in the field during a summer growth period.Canopy photosynthesis declined as the growth period progressed,reflecting a decline in the photosynthetic capacity of successiveyoungest fully expanded leaves. The decline in the maximum photosyntheticcapacity of the canopies was correlated with a decline in theirquantum efficiencies at low irradiance. Changes in canopy structureresulted in changes in canopy net photosynthesis and dark respiration.No clear relationships between changes in the environment andchanges in canopy net photosynthesis and dark respiration wereestablished. The relative distributions of 14C in the shootsof the varieties gave a good indication of the amount of drymatter per ground area in the varieties.  相似文献   

10.
11.
A brief account is given of the research that D.I. Arnon did before he ventured into the field of photosynthesis, viz. his work on inorganic plant nutrition in the laboratory of D.R. Hoagland. The connection between the two areas is indicated. In his work on plant nutrition Dr Arnon emphasized the role of specific nutrients and, with P.R. Stout, formulated a definition of essentiality that is used to this day. It is now necessary, however, to take into account elements not meeting their criteria of essentiality, as shown by a consideration of the element silicon.  相似文献   

12.
Photosynthesis, growth, and the role of chloride   总被引:5,自引:3,他引:2       下载免费PDF全文
Previous studies with isolated chloroplasts have indicated that Cl is an essential cofactor for photosynthesis. Considerable support for the postulated Cl requirement in photosynthesis came from the observation that Cl is essential for growth. Data are presented which show that a 60% reduction in growth which occurred in Cl -deficient sugar beet (Beta vulgaris L.) was not due to an effect of Cl on the rate of photosynthesis in vivo (net CO2 uptake per unit area of attached leaves). The principal effect of Cl deficiency was to lower cell multiplication rates in leaves, thus slowing down their growth and ultimately decreasing their area. The absence of an effect of Cl on photosynthesis in vivo was unlikely to have been due to Cl retention by the chloroplasts because their Cl concentration (measured after nonaqueous isolation) decreased progressively with decrease in leaf Cl.  相似文献   

13.
14.
Photosynthesis in flashing light   总被引:3,自引:0,他引:3  
  相似文献   

15.
16.
Photosynthesis in Drought-Adapted Cassava   总被引:5,自引:0,他引:5  
Calatayud  P.-A.  Llovera  E.  Bois  J.F.  Lamaze  T. 《Photosynthetica》2000,38(1):97-104
After 45 d of limited water supply, cassava (Manihot esculenta Crantz) exhibited pronounced reduction in shoot growth, high leaf fall, and decreased stomatal conductance. However, the water status of the remaining leaves was unaffected. This was combined with an amplified heliotropic response and drooping which minimises radiant energy interception at mid-day, suggesting that leaves are sensitive to high irradiance (I). In well-irrigated plants, CO2-saturated oxygen evolution and net photosynthetic rate (P N) in air were markedly higher (5-fold) in young (expanding) leaves than in mature leaves. Water limitation did not strongly modify CO2-saturated oxygen evolution but it altered P N in air for both types of leaves, although differently. The mature leaves of drought-adapted plants displayed residual rate of P N and deteriorated photosystem 2 (PS2) photochemistry estimated from chlorophyll (Chl) a fluorescence measurements. In young leaves at moderate I, P N was depressed by only 66 % in stressed plants. Moreover, the photochemical quenching of Chl a fluorescence and the quantum efficiency of PS2 photochemistry in young leaves were comparable in both control and stressed plants. In contrast at high I, P N was almost null and marked decreases in the two fluorescence parameters were apparent. Hence the strong heliotropic response and drooping displayed by young leaves under water limitation is an important strategy for avoiding inactivation of P N by high I and therefore for cassava tolerance to drought.  相似文献   

17.
Photosynthesis in Gibberellin-Treated Leaves   总被引:4,自引:3,他引:1       下载免费PDF全文
  相似文献   

18.
19.
Photosynthesis, grain yield, and nitrogen utilization in rice and wheat   总被引:8,自引:0,他引:8  
Makino A 《Plant physiology》2011,155(1):125-129
  相似文献   

20.
Three-year-old Pinus strobus plants, grown under conditionsof either high or low light intensities, were brought from thenursery to the laboratory every three to four weeks from themiddle of April 1961 until January 1962. Translocation, measuredas the amount of 14C recovered from the roots at the end ofseven hours of illumination following exposure of the shootto 14CO2, was found to be high in the spring, dropping to negligibleamounts during June and July, increasing again in the autumnand declining after October. Seasonal variation in root respirationwas found to parallel that of translocation. Rates of apparentphotosynthesis were low during the spring, rising to a maximumduring September, and then declining over the winter. The respiration,photosynthesis, and translocation of the low-light grown plantsfollowed a similar pattern to those grown in high-light, exceptthat in general rates were of a lower order. In the high-light grown plants more than 90 per cent of theabsorbed carbon was present in the ethanol-soluble form, ofwhich sugars formed at least 90 per cent. This was even morepronounced in the case of low-light grown plants. The main sugarwas always sucrose. The raffinose content was found to decreaseduring the warmer months. The new needles, during their period of maximum growth, fixedcarbon dioxide photosynthetically at a rate comparable to thatof the old needles. The new stems also possessed a relativelyhigh carbon dioxide fixing ability. Shoot growth, as measured by the increase in length of the newleader stem and new needles, showed the typical patterns forpine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号