首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Growth of Sakurajima radish seedlings (Raphanus sativus var.hortensis f. gigantissimus Makino) was studied in relation tothe effects of light, the effectiveness of plant hormones, andthe variation in endogenous growth inhibitor content Externally applied GAs and IAA had no effect on the elongationof the hypocotyl in the light as well as in the dark. BA wasslightly promotive in the light, but was not so effective asto nullify the light-induced inhibition of elongation. ABA wasstrongly suppressive in the light as well as in the dark. Growth inhibitors in seedlings were extracted, analyzed by thin-layerchromatography and the Sakurajima radish hypocotyl elongationtest, and 3 acidic and 3 neutral inhibitors were detected. Amongthem all of the acidic and one of the neutral inhibitors increasedwith the time period of illumination, whereas the other 2 neutralsubstances remained almost unchanged in the light but decreasedin the dark. Thus the levels of all 6 inhibitors was higherin light-grown seedlings than in dark-grown ones. This suggeststhat light inhibition in Sakurajima radish hypocotyls may becontrolled by the variation in the inhibitor levels in the seedlings. (Received December 1, 1977; )  相似文献   

3.
A new growth inhibitor, tentatively named pisumin, which increased under red light and remained at initial level or decreased when dwarf pea (Pisum sativum L. cv Progress No. 9) seedlings were transferred from red light to dark, has been isolated in the form of a colorless powder from light-exposed epicotyls of dwarf peas, and characterized partially as an aliphatic carboxylic acid (molecular weight 284) by spectrometric analyses.

Exogenous pisumin inhibited the growth of epicotyl segments of dwarf peas at concentrations higher than 0.1 millimolar in the dark.

  相似文献   

4.
Raphanusanin is a plant growth-inhibiting substance which plays an important role in light growth inhibition and phototropism of radish hypocotyls. We investigated the effect of raphanusanin on indole-3-acetic acid (IAA)-mediated orientation of microtubules (MT) in the outer epidermal cells of radish hypocotyl segments using immunofluorescence microscopy. IAA-mediated MT reorientation preceded cell elongation induced by IAA. A change of IAA-mediated MT orientation from longitudinal to transverse started within less than 15 min after IAA treatment, while significant growth promotion induced by IAA was found within about 30 min. The IAA-mediated transverse MT orientations were significantly inhibited by simultaneously added raphanusanin. We also investigated the effect of raphanusanin on the MT orientation of the segments pretreated with IAA. The change of MT orientation induced by raphanusanin preceded growth inhibition of the segments. Within about 60 min after its application, raphanusanin initiated inhibition of the steady-state elongation pre-induced by IAA, while IAA-mediated transverse MT orientations started to change into longitudinal orientations within less than 30 min after application of raphanusanin. Based on these results, it is suggested that raphanusanin induces growth inhibition through interference with the auxin-mediated MT orientations.  相似文献   

5.
Curtis RW 《Plant physiology》1977,59(6):1051-1054
Over a 3-day period, the minimum white fluorescent light intensity required for malformin-induced growth stimulation of etiolated and green cuttings of Phaseolus aureus was approximately 2.6 × 103 and 0.4 × 103 ergs/cm2 · sec, respectively. High light intensities were unable to inhibit the ability of malformin to stimulate growth. Over 3 days, the minimum photoperiod for malformin-induced growth stimulation using etiolated and green cuttings and a light intensity of 13.5 × 103 ergs/cm2 · sec was 4 hours and 1 hour, respectively. Malformin must be present in the area of growth stimulation during the time of light treatment. Those changes induced by light and required for malformin-induced growth stimulation were estimated to undergo almost complete decay within 1 hour in the dark. By manipulating the experimental technique, it was possible to stimulate the growth of green cuttings with malformin with a 10-min light treatment (13.5 × 103 ergs/cm2 · sec). Although low light intensities and short photoperiods did not allow growth stimulation by malformin using etiolated cuttings, they prevented or alleviated growth inhibition induced by malformin in the dark.  相似文献   

6.
Two species of Spirodela were grown aseptically in a simple mineral medium containing sucrose. Weak red light (15 erg cm−2 sec−1) enhanced dark growth of S. oligorrhiza, whereas weak far red light (15 erg cm−2 sec−1) when given after the red light reduced this effect.  相似文献   

7.
Nitrate reduction was studied as a function of carbohydrate concentration in detached primary leaves of barley (Hordeum vulgare L. cv Numar) seedlings under aerobic conditions in light and darkness. Seedlings were grown either in continuous light for 8 days or under a regimen of 16-hour light and 8-hour dark for 8 to 15 days. Leaves of 8-day-old seedlings grown in continuous light accumulated 4 times more carbohydrates than leaves of plants grown under a light and dark regimen. When detached leaves from these seedlings were supplied with NO3 in darkness, those with the higher levels of carbohydrates reduced a greater proportion of the NO3 that was taken up. In darkness, added glucose increased the percentage of NO3 reduced up to 2.6-fold depending on the endogenous carbohydrate status of the leaves. Both NO3 reduction and carbohydrate content of the leaves increased with age. Fructose and sucrose also increased NO3 reduction in darkness to the same extent as glucose. Krebs cycle intermediates, citrate and succinate, did not increase NO3 reduction, whereas malate slightly stimulated it in darkness.

In light, 73 to 90% of the NO3 taken up was reduced by the detached leaves; therefore, an exogenous supply of glucose had little additional effect on NO3 reduction. The results indicate that in darkness the rate of NO3 reduction in primary leaves of barley depends upon the availability of carbohydrates.

  相似文献   

8.
We have developed and characterized a system to analyze light effects on auxin transport independent of photosynthetic effects. Polar transport of [3H]indole-3-acetic acid through hypocotyl segments from etiolated cucumber (Cucumis sativus L.) seedlings was increased in seedlings grown in dim-red light (DRL) (0.5 μmol m−2 s−1) relative to seedlings grown in darkness. Both transport velocity and transport intensity (export rate) were increased by at least a factor of 2. Tissue formed in DRL completely acquired the higher transport capacity within 50 h, but tissue already differentiated in darkness acquired only a partial increase in transport capacity within 50 h of DRL, indicating a developmental window for light induction of commitment to changes in auxin transport. This light-induced change probably manifests itself by alteration of function of the auxin efflux carrier, as revealed using specific transport inhibitors. Relative to dark controls, DRL-grown seedlings were differentially less sensitive to two inhibitors of polar auxin transport, N-(naphth-1-yl) phthalamic acid and 2,3,5-triiodobenzoic acid. On the basis of these data, we propose that the auxin efflux carrier is a key target of light regulation during photomorphogenesis.  相似文献   

9.
Chlorella vulgaris Beyerinck (Emerson's strain), fails to grow in the dark even when sugars are provided. This phenomenon was clearly demonstrated in the alga, C. vulgaris, for which the growth rate in darkness on a glucose medium remained constant for 2 days and then declined to approach zero. Pigment concentrations also declined in darkness. Changes in flow rate of 1% CO2-in-air from zero to 7 ml per minute caused a progressive increase in the dark growth rate over a 5-day period, but did not maintain growth in the dark. Rates above 7 ml per minute produced no changes in growth rates.

White light intensities below the compensation point of the alga maintained heterotrophic growth. The saturation value for this response was 0.8 μw/cm2. White light also initiated growth in nongrowing cultures transferred from darkness to light.

The action spectrum for heterotrophic growth indicated a porphyrin as the active pigment. Light in the 425 mμ region was 4 times as effective as white light in stimulating heterotrophic growth. A secondary peak of growth stimulation occurred in the 575 mμ region.

The respiration of glucose by the alga was stimulated by low intensities of white light. This response was not immediate, but was clearly present after the third day of incubation.

Malonate and cyanide were inhibitory to growth of C. vulgaris on inorganic medium or glucose medium under 300 ft-c of white light. These data suggested that succinic dehydrogenase and cytochrome oxidase systems were present.

Substances inhibitory to growth were excreted into the medium under dark-growth conditions, and 2 of these substances were indentified as formic and acetic acids.

The evidence suggested that respiration of glucose cannot proceed for an extended period of time in darkness. The reason for this is postulated to be the lack of a cytochrome or a cytochrome precursor.

  相似文献   

10.
Samimy C 《Plant physiology》1978,62(6):1005-1006
Development of dark-grown “Clark” soybean (Glycine max [L.] Merr.) seedlings is abnormal at 25 C but normal at 20 and 30 C. At 25 C, hypocotyls swell and fail to elongate normally; lateral root formation and seedling ethylene evolution are enhanced.

Co2+ promoted hypocotyl elongation of etiolated “Clark” soybean seedlings by 28% when grown at 25 C. The same growth-promoting concentration reduced hypocotyl thickness and primary root elongation by 28 and 43%, respectively. Co2+ inhibited ethylene production both of intact seedlings and of apical 1-centimeter hypocotyl segments with attached epicotyls and cotyledons by 65 and 60%, respectively. These results suggest that Co2+ exerts its effects on the hypocotyl growth by inhibiting ethylene production, and also confirm our previous conclusion that abnormal ethylene production at 25 C is responsible for the inhibition of hypocotyl elongation and for its swelling.

  相似文献   

11.
When 36-hour-old dark grown radish seedlings are transferred to far-red light, there is a decrease in cytoplasmic β-fructosidase (βF) and an increase in cell wall βF compared to the dark controls. Cytoplasmic and cell wall-bound β-fructosidase are both glycoproteins and exhibit high antigenic similarities, but differ according to charge heterogeneity and carbohydrate microheterogeneity. Growth of radish seedlings in the presence of tunicamycin results in a partial inhibition of βF glycosylation but nonglycosylated βF still accumulates in the cell wall under far-red light. Thus, glycosylation is not necessary for intracellular transport, for correct targetting, or for wall association of an active βF. The nonglycosylated cytoplasmic and cell wall βF forms have the same relative molecular mass but glycosylated forms have different oligosaccharide side-chains, with respect to size and susceptibility to α-mannosidase and endoglycosidase D digestion. The oligosaccharides of both forms are partly removed by endoglycosidase H when βF is denatured. Isoelectric focusing analysis of βF shows that the cell wall-associated isozymes are more basic than the cytoplasmic isozymes, and that the charge heterogeneity also exists within a single plant. A time course of changes in βF zymograms shows a far red light stimulation of the appearance of the basic forms of the enzyme. However, the more basic cell wall specific βF forms are not present when N-glycosylation is prevented with tunicamycin. These results indicate that cytoplasmic and cell wall βF probably have common precursor polypeptides and basic cell wall forms arise via processing events which are tunicamycin sensitive.  相似文献   

12.
Sponsel VM  Reid JB 《Plant physiology》1992,100(2):651-654
Dwarf (le5839) seedlings of Pisum sativum respond to gibberellin A20 (GA20) in the dark, although the same dosage of GA20 applied to light-grown le5839 seedlings elicits no growth response. The acylcyclohexanedione growth retardant, LAB 198 999, which is known to inhibit gibberellin oxidation and in particular 3β-hydroxylation such as the conversion of GA20 to GA1, also inhibits the growth response of dark-grown dwarf (le5839) seedlings to GA20. Thus, the biological activity of GA20 in the dark appears to be a consequence of its conversion to GA1, even though it is known from studies with light-grown seedlings that the le mutation reduces the conversion of GA20 to GA1.  相似文献   

13.
14.
The effects of alternating magnetic field (AMF) with the frequency of 50 Hz on the dynamics of unfolding of cotyledon leaves, the composition and level of polar and neutral lipids and their component fatty acids (FA) were studied in 5-day-old radish seedlings (Raphanus sativus L. var. radicula D.L., cv. Rozovo-krasnyi s belym konchikom) grown in the light and in the dark. AMF weakened the inhibitory effect of light on unfolding of cotyledon leaves. In the light, the total content of lipids, as well as the level of polar and neutral lipids, in the seedlings in AMF was greater than in control material. In polar lipids, the total amount of glyco-and phospholipids increased; in neutral lipids, the level of triacylglycerols rose. The ratio between phospholipids and sterols (PhL/S) increased. In the dark, the total content of lipids and the level of neutral lipids in the seedlings in AMF were lower than in control material, and the ratio PhL/S decreased. In control material, there were no differences in the relative total content of unsaturated FA in the light and in the dark, whereas the level of linolenic acid was higher in the light than in the dark. AMF induced a decrease in the content of linolenic acid in the light and a rise in the dark; the level of erucic acid in the light decreased. The ratio between unsaturated and saturated FA decreased both in the light and in the dark. It was concluded that AMF with the frequency of 50 Hz was an adjusting agent considerably changing the content of lipids in the radish seedlings in the light and in the dark.  相似文献   

15.
In rice, light is known to inhibit the growth of coleoptiles and seminal roots of seedlings through phytochrome. Here we investigated the light-induced growth inhibition of seminal roots and compared the results with those recently determined for coleoptiles. Although three rice phytochromes, phyA, phyB and phyC functioned in a similar manner in coleoptile and seminal root, the Bunsen-Roscoe law of reciprocity was not observed in the growth inhibition of seminal root. We also found coiling of the seminal root at the root tip which appeared to be associated with the photoinhibition of seminal root growth. This could be a new light-induced phenomenon in certain cultivars of rice.Key words: growth, hypocotyl, Oryza sativa, phytochrome, seminal rootPhytochrome-mediated growth inhibition was reported for both coleoptiles and seminal roots of rice seedlings in the same year by two research groups in Nagoya and Tohoku University in Japan, respectively.1,2 Forty years after the findings, a detailed photobiological study was carried out for the coleoptile growth inhibition.3 In this study, we examined photoinhibition of seminal root growth, and found similarities and differences between light-induced growth inhibition of the two organs in rice seedlings. Although coleoptile growth was inhibited by pulses of light, growth inhibition of seminal roots required light irradiation longer than 6 h. The Bunsen-Roscoe law of reciprocity was not observed in the growth inhibition of seminal root. Action spectra were determined for the growth inhibition of coleoptiles, and the mode of inhibition was found to depend on the age of the coleoptiles. At the early stage of development [40 h after inducing germination (AIG)], photoinhibition was predominantly due to the phyB-mediated low-fluence response (LFR), but at the late developmental stage (80 h AIG), it consisted of the phyA-mediated very low-fluence response (VLFR) as well as the phyB-mediated LFR.3,4 In the case of root growth, the sensitivity of photoinhibition also depended on age, and was most sensitive in the period of 48–96 h AIG when seedlings were irradiated for 24 h. Using rice phytochrome mutants,5 we found that far-red light for root growth inhibition was perceived exclusively by phyA, that red light was perceived by both phyA and phyB, and that phyC had little or no role in growth inhibition. Furthermore, the fluence rate required for phyB-mediated inhibition was more than 10,000-fold greater than that required for phyA-mediated inhibition. These characteristics of photoinhibition in seminal roots are similar to those found in coleoptiles at the late stage of development.3 In seminal roots, photoinhibition appeared to be mediated by photoreceptors in the root itself.Interestingly, coiling of the root tips always occurred when root growth was inhibited under the light condition (Fig. 1B). Under continuous light irradiation, rice seeds germinated ∼30 h AIG. Seminal roots formed a coil at the root tips during the 48–96 h period AIG, and stopped growing. When they were irradiated for only 24 h on the 3rd day AIG, coils started to form just after the end of irradiation. The roots continued to coil for ∼28 h and then began growing straight again (Fig. 1C). The coils were larger and looser than those formed under continuous light condition (Fig. 1, Open in a separate windowFigure 1Light irradiation induces coiling of root tips in rice seedlings (Oryza sativa cv. Nipponbare). A rice seedling was grown in the dark (A), or in continuous white light (55 µole m−2 s−1) (B) for 7 d at 28°C. In (C), it was irradiated by white light for 24 h during the 48–72 h period after inducing germination, and kept in the dark again until the 7th day. Arrows and arrowheads indicate the seminal and crown roots, respectively. Seedlings were grown in glass tubes of 3-cm diameter.

Table 1

The size of coil of root tips formed after white light irradiation
Light irradiationDiameter* (mm)Length* (mm)Number of turns*
Continuous irradiation for 7 d1.96 ± 0.412.70 ± 0.634.6 ± 0.8
24 h-long irradiation during the 48–72 h period after inducing germination2.60 ± 0.443.33 ± 0.192.3 ± 0.5
Open in a separate window* Mean and SD of 4-7 seedlings.We also found that light exposure had an opposite effect on the growth of the seminal and crown roots of rice seedlings. Light inhibited the growth of seminal roots, whereas it promoted the growth of crown roots. In fact, light was found to promote growth of Arabidopsis primary roots, in which phyA and phyB were found to be responsible for photoperception as well as photosynthetic activity.6 In rice seedlings, growth orientation of the crown roots is also affected by light exposure, whereas growth orientation of the seminal roots is controlled solely by the gravity vector. The crown roots grow in a horizontal direction in the dark, while they grow toward the gravity vector in the light.7 The contrasting responses to light in the seminal and crown roots are likely to help the transition of rice seedlings from the embryonic root system, in which the seminal roots are predominant, to the fibrous root system, which contains numerous crown roots.  相似文献   

16.
Cultures of megatherium 899a, growing under different conditions, were exposed to ultraviolet or white light. 1. Cultures exposed to ultraviolet light and then to white light continue to grow at the normal rate. Cultures exposed to ultraviolet light and then placed in the dark grow at the normal rate for varying lengths of time, depending on conditions, and then lyse with the liberation of from 5 to 1000 phage particles per cell, depending on the culture medium. 2. Increasing the time of exposure to ultraviolet light results in an increase in the fraction of cells which lyse in the dark. The lysis time decreases at first, remains constant over a wide range of exposure, and then increases. The lysis can be prevented by visible light after short exposure, but not after long exposures. 3. The time required for lysis is independent of the cell concentration. 4. Effect of temperature. After exposure to ultraviolet the cell concentration increases about 4 times at 20°, 30°, or 35°C., but only 1.5 to 2.0 times at 40–45°. This is due to the fact that the growth rate of the culture reaches a maximum at 38° while the lysis rate increases steadily up to 45°. 5. Terramycin decreases the growth rate and lysis rate in proportion. 6. At pH 5.1, the cultures continue to grow slowly in the dark after exposure to ultraviolet light. 7. Megatherium sensitive cells infected with T phage lyse more rapidly than ultraviolet-treated 899a, and visible light does not affect the lysis time. The results agree with the assumption that exposure to ultraviolet results in the production of a toxic (mutagenic) substance inside the bacterial cell. This substance is inactivated by white light.  相似文献   

17.
Goren R  Tomer E 《Plant physiology》1971,47(2):312-316
Seselin, a natural coumarin derivative isolated from citrus roots, inhibited radicle growth in seedlings of cucumber (Cucumis sativa), lettuce (Lactuca sativum), radish (Raphanus sativus), and wheat (Triticum aestivum) grown in the dark. Coumarin similarly inhibited radicle growth of cucumber seedlings. Growth retardation of the cucumber radicles was accompanied by an increased activity of peroxidase and indole-3-acetic acid oxidase. Both compounds antagonized indole-3-acetic acid-induced growth of wheat coleoptiles, whereas coumarin was much less effective than seselin in antagonizing gibberellic acid-induced release of reducing sugars from barley endosperm. It is suggested that seselin plays an important role in the regulation of root growth, and that it is the indole-3-acetic acid oxidase cofactor previously detected in citrus roots.  相似文献   

18.
Aslam M  Huffaker RC 《Plant physiology》1982,70(4):1009-1013
In vivo NO3 reduction in roots and shoots of intact barley (Hordeum vulgare L. var Numar) seedlings was estimated in light and darkness. Seedlings were placed in darkness for 24 hours to make them carbohydrate-deficient. During darkness, the leaves lost 75% of their soluble carbohydrates, whereas the roots lost only 15%. Detached leaves from these plants reduced only 7% of the NO3 absorbed in darkness. By contrast, detached roots from the seedlings reduced the same proportion of absorbed NO3, as did roots from normal light-grown plants. The rate of NO3 reduction in the roots accounted for that found in the intact dark-treated carbohydrate-deficient seedlings. The rates of NO3 reduction in roots of intact plants were the same for approximately 12 hours, both in light and darkness, after which the NO3 reduction rate in roots of plants placed in darkness slowly declined. In the dark, approximately 40% of the NO3 reduction occurred in the roots, whereas in light only 20% of the total NO3 reduction occurred in roots. A lesser proportion was reduced in roots because the leaves reduced more nitrate in light than in darkness.  相似文献   

19.
The repeated exposure of Pisum (pea) plants to red light brings into operation an apparent synthesis of phytochrome which is not observed in material kept in the dark. This process shows some temperature compensation but has an optimum at 26°; it is irreversibly inhibited by 10−4 m cycloheximide and 10 μg/ml actinomycin D. It is also inhibited by the auxins indoleacetic acid, naphthalene acetic acid and 2,4-dichlorophenoxyacetic acid at 10−4 m but in these cases the inhibition is completely reversed when the auxin is washed out of the tissue. Antiauxins 2,4,6-trichlorophenoxyacetic acid and p-chlorophenoxy isobutyric acid, while strongly inhibiting growth have little effect on apparent synthesis. Other growth regulators and the precursor of tetrapyrrole synthesis, δ-aminolevulinic acid, have no consistent effect on the process, but 3 × 10−4 m cobalt (II) nitrate is inhibitory. The capacity for apparent synthesis decreases as the cells approach maturity. The results may be explained by either de novo synthesis of phytochrome, or by a transformation process resembling in some respects the dark reversion of Pfr to Pr. The physiological role of apparent synthesis is suggested.  相似文献   

20.
Soybean (Glycine max [L.] Merr.) seeds were imbibed and germinated with or without NO3, tungstate, and norflurazon (San 9789). Norflurazon is a herbicide which causes photobleaching of chlorophyll by inhibiting carotenoid synthesis and which impairs normal chloroplast development. After 3 days in the dark, seedlings were placed in white light to induce extractable nitrate reductase activity. The induction of maximal nitrate reductase activity in greening cotyledons did not require NO3 and was not inhibited by tungstate. Induction of nitrate reductase activity in norflurazon-treated cotyledons had an absolute requirement for NO3 and was completely inhibited by tungstate. Nitrate was not detected in seeds or seedlings which had not been treated with NO3. The optimum pH for cotyledon nitrate reductase activity from norflurazon-treated seedlings was at pH 7.5, and near that for root nitrate reductase activity, whereas the optimum pH for nitrate reductase activity from greening cotyledons was pH 6.5. Induction of root nitrate reductase activity was also inhibited by tungstate and was dependent on the presence of NO3, further indicating that the isoform of nitrate reductase induced in norflurazon-treated cotyledons is the same or similar to that found in roots. Nitrate reductases with and without a NO3 requirement for light induction appear to be present in developing leaves. In vivo kinetics (light induction and dark decay rates) and in vitro kinetics (Arrhenius energies of activation and NADH:NADPH specificities) of nitrate reductases with and without a NO3 requirement for induction were quite different. Km values for NO3 were identical for both nitrate reductases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号