共查询到20条相似文献,搜索用时 15 毫秒
1.
The recombinant Escherichia coli strain DPD2794 containing a recA::luxCDABE fusion is used to detect genotoxicity of various chemicals. Genotoxic agents were previously categorized into two groups, Direct DNA Damaging (DDD) agents and Indirect DNA Damaging (IDD) agents; these two groups have been distinguished with this strain. Minimum detectable concentrations of the DDD agents were about one to five orders of magnitude lower than those of the IDD agents. The response patterns of this strain to DDD agents differed from those to IDD agents in terms of kinetics and the forms of the dose-dependent response. 相似文献
2.
The recombinant bioluminescent bacterium, DNT5, containing a nagR-nagAa::luxCDABE fusion, was tested in a multi-channel continuous monitoring system to evaluate its ability to detect benzoic acid derivatives. Seven chemicals, benzoic acid, salicylic acid, 2,5-dihydroxy benzoic acid, 3,5-dihydroxy benzoic acid, benzene, naphthalene and phenol, were used to characterize the responses of DNT5. This strain responded uniquely to each chemical, and these responses were then evaluated based upon the structures of each chemical. The greatest bioluminescent responses were to salicylic acid and benzoic acid, followed by 2,5-dihydroxy benzoic acid and 3,5-dihydroxy benzoic acid, but DNT5 was unresponsive when exposed to benzene, phenol and naphthalene, suggesting it has a strong preference for benzoic acid derivatives with few or no ring-substituted groups. 相似文献
3.
Joo-Myung Ahn Byoung Chan Kim Man Bock Gu 《Biotechnology and Bioprocess Engineering》2006,11(6):516-521
The use ofgltA gene, as a new biomarker for environmental stress biomonitoring, was investigated because of its key position as the first
enzyme of the tricarboxylic acid (TCA) cycle. A recombinant bioluminescentEscherichia coli strain, EBJM2, was constructed using a plasmid carrying the citrate synthase (gltA) promoter transcribing thePhotorhabdus luminescens luxCDABE genes (gltA::luxCDABE). The responses from this strain were studied with five different classes of toxicants: DNA damage chemicals, phenolics,
oxidative-stress chemicals, PAHs, and organic solvents. EBJM2 responded strongly to DNA damage chemicals, such as mitomycin
C (MMC) and methyl-nitro-nitrosoguanidine (MNNG), and nalidixic acid with the strongest responses. In contrast, tests with
several compounds from the other four classes of toxicants gave no significant response. Therefore, EBJM2 was found to be
sensitive to DNA damage chemicals. 相似文献
4.
Ghanem S 《Genetics and molecular research : GMR》2011,10(3):1445-1454
In an attempt to clone the ORF of the nptII gene of Escherichia coli K12 (ATCC 10798), two degenerate primers were designed based on the nptII sequence of its Tn5 transposon. The nptII ORF was placed under the control of the E. coli hybrid trc promoter, in the pKK388-1 vector, transformed into E. coli DH5α ΔrecA (recombinant, deficient strain). Transferred cells were tested for ampicillin, tetracycline, kanamycin, neomycin, geneticin, paromomycin, penicillin, and UV resistance. The neomycin phosphotransferase gene of E. coli was cloned successfully and conferred kanamycin, neomycin, geneticin, and paromomycin resistance to recombinant DH5α; this did not inhibit insertion of additional antibiotic resistance against ampicillin and tetracycline, meaning the trc promoter can express two different genes carried by two different plasmids harbored in the same cell. This resistance conferral process could be considered as an emulation of horizontal gene transfer occurring in nature and would be a useful tool for understanding mechanisms of evolution of multidrug-resistant strains. 相似文献
5.
6.
7.
A 6.3 kb DNA fragment containing genes responsible for azo-dye decolorization was cloned and expressed in Escherichia coli. The resulting recombinant strain E. coli CY1 decolorized 200 mg azo dye (C.I. Reactive Red 22) l–1 at 28 °C at 8.2 mg g cell–1 h–1, while the host (E. coli DH5) had no color-removal activity. Addition of 0.5 mM isopropyl--d-thiogalacto-pyranoside (IPTG) increased the decolorization rate 3.4-fold. The dependence of the decolorization rate on initial dye concentration essentially followed Monod-type kinetics and the maximal rate occurred with the dye at 600 mg l–1. The decolorization rate of E. coli CY1 was optimal at 40 °C and pH 11. Aeration (increased dissolved O2 level) strongly inhibited the decolorization, but decolorization occurred effectively under static incubation conditions (no agitation was employed). The CY1 strain also exhibited excellent stability during repeated-batch operations. 相似文献
8.
Liu ZQ Zhou M Zhang XH Xu JM Xue YP Zheng YG 《Journal of molecular microbiology and biotechnology》2012,22(1):35-47
Iminodiacetic acid (IDA) is widely used as an intermediate in the manufacture of chelating agents, glyphosate herbicides and surfactants. In the current work, the fragment with the length of 1,110 bp encoding the Acidovorax facilis nitrilase was obtained. The recombinant nitrilase expressed in Escherichia coli BL21 (DE3) was successfully used in the production of IDA from iminodiacetonitrile. To improve the stability of operation, the recombinant cells were entrapped in polyvinyl alcohol (PVA) and sodium alginate (SA) copolymer. The maximum relative nitrilase activity with 98.1% was further observed at 1.0% SA, 8.0% PVA, 1.0% CaCl(2), and 5.0% wet cells, under conditions of 1.0% iminodiacetonitrile in distilled water and a temperature of 40°C, respectively. The entrapped cells facilitated easy separation and good recycling compared with free cells. Moreover, the immobilized cells showed good operation and storage stability. This report is the first to describe IDA preparation using immobilized recombinant E. coli harboring nitrilase. 相似文献
9.
The expression of the Escherichia coli uvrD gene was studied with a uvrD::Mud(Aprlac) insertion mutant. The results indicate that it is inducible by DNA damaging agents in a recA+ gene-dependent manner. 相似文献
10.
AIMS: The aim of this study is to understand different adaptive responses in bacteria caused by three different mutagens, namely, an intercalating agent, an alkylating agent and a hydroxylating agent, and the repair systems according to the type of DNA damage, that is, DNA cross-linking and delayed DNA synthesis, alkylation and hydroxylation of DNA. A recombinant bioluminescent Escherichia coli, DPD2794 with the recA promoter fused to luxCDABE originating from Vibrio fischeri, was used in this study. METHODS AND RESULTS: The recombinant bioluminescent E. coli strain DPD2794, containing a recA promoter fused to luxCDABE from V. fischeri, was used to detect adaptive and repair responses to DNA damage caused by mitomycin C (MMC), and these responses were compared with those when the cells were induced with N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and hydrogen peroxide (H2O2). The response ratio between the induced samples and that of the controls decreased suddenly when the induced culture was used in further inductions, indicating a possible adaptive response to DNA damage. DNA damage, or the proteins produced, because of MMC addition does not appear to be completely resolved until the seventh sub-culture after the initial induction, whereas simple damage, such as the base modification caused by MNNG and H2O2, appears to be repaired rapidly as evidenced by the quick recovery of sensitivity. CONCLUSIONS: These results suggest that it takes more time to completely repair DNA damage caused by MMC, as compared with a simple repair such as that required for the damage caused by MNNG and H2O2. Therefore, repair of the damage caused by these three mutagens is controlled by different regulons, even though they all induced the recA promoter. SIGNIFICANCE AND IMPACT OF THE STUDY: Using a bioluminescent E. coli harbouring a recA promoter-lux fusion, it was found that different adaptive responses and repair systems for DNA damage caused by several mutagens exists in E. coli. 相似文献
11.
12.
B. Clara Nudel M. Gabriela Pueyo N. D. Judewicz Ana M. Guilietti 《Antonie van Leeuwenhoek》1989,56(3):273-282
Escherichia coli recombinant strains bearing the thr operon have been previously selected for threonine production and phenotypically classified according to antibiotic resistance properties (Nudel et al. 1987).Further analysis of those strains permitted the isolation and restriction mapping of two different plasmids of 13 kb and 18.6 kb. The smaller one, which expressed tetracycline resistance gave better results on threonine accumulation but it was rather unstable when grown without antibiotic pressure. Therefore, other hosts were transformed with those plasmids to improve stability.A threonine-auxotrophic strain was a better host for plasmid maintenance and expression of thr operon. Host influence in plasmid-mediated threonine production was studied in terms of specific yields (the ratios of threonine accumulated to biomass values) and of plasmid maintenance (percent of AprTcr clones after cultivation in non selective media).We also determined that semisynthetic media of defined composition were better than rich media for threonine expression, due to feed-back controls exerted by undesired catabolites accumulated in complex media. 相似文献
13.
Some observations in freeze-drying of recombinant bioluminescent Escherichia coli for toxicity monitoring 总被引:2,自引:0,他引:2
A recombinant bioluminescent bacteria, containing a fabA::luxCDABE fusion gene, has been used to characterize freeze-drying methods, which may be conveniently used as a tool for the development of a portable biosensor. Through residual water, viability, biosensing activity and scanning electron microscopy analyses, the characteristics that four cryoprotectants, trehalose, sucrose, sorbitol, and mannitol, conferred on freeze-dried samples were elucidated, including the morphology, water content and activity of the cells. It was found that trehalose showed the best freeze-drying efficiency among the tested cryoprotectants and it might have a specific capacity limitation in protection of the cells during the freeze step. Humidity might result in damage to the cells, according to the viability, when exposed to air during storage, while the water remaining post freeze-drying showed good correlation with damage to the freeze-dried cells when under air-tight storage conditions. The results with other recombinant bioluminescent bacteria indicated that these findings might be general features of the freeze-drying processes. 相似文献
14.
Thouand G Horry H Durand MJ Picart P Bendriaa L Daniel P DuBow MS 《Applied microbiology and biotechnology》2003,62(2-3):218-225
A biosensor was developed for the detection of tributyltin (TBT), using a bioluminescent recombinant Escherichia coli:: luxAB strain. Dedicated devices allowed the on-line measurement of bioluminescence, pH and dissolved oxygen values and the feed-back regulation of temperature. Bacterial physiology was monitored by the measurement of the cellular density, respiratory activity and the intracellular level of ATP, glucose and acetate levels. Our results showed that a synthetic glucose medium gave a better TBT detection limit than LB medium (respectively 0.02 micro M and 1.5 micro M TBT). High growth and dilution rates ( D=0.9 h(-1)) allowed maximum light emission from the bacterium. Moreover, simple atmospheric air bubbling was sufficient to provide oxygen for growth and the bioluminescence reaction. Real-time monitoring of bioluminescence after TBT induction occurred with continuous addition of decanal up to 300 micro M, which was not toxic throughout a 7-day experiment. The design of our biosensor and the optimization of the main parameters that influence microbial activity led to the capacity for the detection of TBT. 相似文献
15.
Li-Qun Jin Zong-Tong Li Zhi-Qiang Liu Yu-Guo Zheng Yin-Chu Shen 《Journal of industrial microbiology & biotechnology》2014,41(10):1479-1486
Methionine as an essential amino acid has been attracting more attention for its important applications in food and feed additives. In this study, for efficient production of methionine from 2-amino-4-methylthiobutanenitrile, a codon-optimized nitrilase gene was newly synthesized and expressed, and the catalytic conditions for methionine production were studied. The optimal temperature and pH for methionine synthesis were 40 °C and 7.5, respectively. The recombinant nitrilase was thermo-stable with half-life of 5.52 h at 40 °C. The substrate loading was optimized in given amount of catalyst and fixed substrate/catalyst ratio mode to achieve higher productivity. Methionine was produced in 100 % conversion within 120 min with a substrate loading of 300 mM. The production of methionine with the immobilized resting cells in packed-bed reactor was investigated. The immobilized nitrilase exhibited good operation stability and retained over 80 % of the initial activity after operating for 100 h. After separation, the purity and the total yield of methionine reached 99.1 and 97 %, respectively. This recombinant nitrilase could be a potential candidate for application in production of methionine. 相似文献
16.
PCR amplified product containing gene responsible for dye decolorization was cloned and expressed in Escherichia coli. The resulting recombinant strain E. coli SS125 decolorized 200mg/l azo dye (Remazol Red) at 30 degrees C at 255 mg cell/l/h, while the host E. coli (DH5 alpha) had no color removal ability. The dependence of the decolorization rate on initial dye concentration and the maximum rate occurred with the dye at 100 mg l(-1). The decolorization rate of E. coli SS125 was optimal at 37-45 degrees C. Aeration strongly-inhibited the decolorization, but decolorization occurred effectively under static and anaerobic incubation conditions. The E. coli SS125 strain also exhibited excellent stability during reported batch operation. 相似文献
17.
18.
Ye-Wang Zhang Ponnandy Prabhu Jung-Kul Lee 《Bioprocess and biosystems engineering》2010,33(6):741-748
Recombinant Escherichia coli whole cells harboring Bacillus licheniformis
l-arabinose isomerase (BLAI) were immobilized with alginate. The operational conditions for immobilization were optimized with
response surface methodology. Optimal alginate concentration, Ca2+ concentration, and cell mass loading were 1.8% (w/v), 0.1 M, and 44.5 g L−1, respectively. The interactions between Ca2+ concentration, alginate concentration, and initial cell mass were significant. After immobilization of BLAI, cross-linking
with 0.1% glutaraldehyde significantly reduced cell leakage. The half-life of immobilized whole cells was 150 days, which
was 50-fold longer than that of free cells. In seven repeated batches for l-ribulose production, the productivity was as high as 56.7 g L−1 h−1 at 400 g L−1 substrate concentration. The immobilized cells retained 89% of the initial yield after 33 days of reaction. Immobilization
of whole cells harboring BLAI, therefore, makes a suitable biocatalyst for the production of l-ribulose, particularly because of its high stability and low cost. 相似文献
19.
A truncated Escherichia coli Novablue gamma-glutamyltranspeptidase (EcGGT) gene, lacking the first 48-bp coding sequence for part of the signal sequence, was amplified by polymerase chain reaction (PCR) and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His6-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 degrees C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were determined to be 41 and 21 kDa respectively by SDS-PAGE, indicating the precursor EcGGT still undergoes the post-translational processing even in the truncation of signal sequence. His6-tagged EcGGT migrated relative to the molecular mass of approximately 120 kDa and its heterodimeric structure was confirmed by a native-PAGE gel. 相似文献
20.
Bacterial resistance to aminoglycosides continues to escalate and is widely recognized as a serious health threat, contributing to interest in understanding the mechanisms of resistance. One important mechanism of streptomycin modification is through ATP dependent O-adenylation, catalyzed by streptomycin adenylyltransferase (SMATase). The aim of this study was to purify the recombinant SMATase by Ni(2+)-IDA-His bind resin column chromatography. Thioredoxin-His6-tagged SMATase fusion protein was produced in a bacterial intracellular expression system mainly in a soluble form. The purified fusion protein showed a single band on SDS-PAGE corresponding to 49 kDa. The recovery of fusion protein was 47% with ninefold purification. The fusion system provided a single step, easy and very rapid purification of SMATase and is suitable for obtaining a highly purified functional protein of interest. The fusion does not affect the functionality of the protein. 相似文献