首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Protein O-mannosyltransferases (PMTs) initiate the assembly of O-mannosyl glycans, an essential protein modification. Since PMTs are evolutionarily conserved in fungi but are absent in green plants, the PMT family is a putative target for new antifungal drugs, particularly in fighting the threat of phytopathogenic fungi. The PMT family is phylogenetically classified into PMT1, PMT2, and PMT4 subfamilies, which differ in protein substrate specificity. In the model organism Saccharomyces cerevisiae as well as in many other fungi the PMT family is highly redundant, and only the simultaneous deletion of PMT1/PMT2 and PMT4 subfamily members is lethal. In this study we analyzed the molecular organization of PMT family members in S. cerevisiae. We show that members of the PMT1 subfamily (Pmt1p and Pmt5p) interact in pairs with members of the PMT2 subfamily (Pmt2p and Pmt3p) and that Pmt1p-Pmt2p and Pmt5p-Pmt3p complexes represent the predominant forms. Under certain physiological conditions, however, Pmt1p interacts also with Pmt3p, and Pmt5p with Pmt2p, suggesting a compensatory cooperation that guarantees the maintenance of O-mannosylation. Unlike the PMT1/PMT2 subfamily members, the single member of the PMT4 subfamily (Pmt4p) acts as a homomeric complex. Using mutational analyses we demonstrate that the same conserved protein domains underlie both heteromeric and homomeric interactions, and we identify an invariant arginine residue of transmembrane domain two as essential for the formation and/or stability of PMT complexes in general. Our data suggest that protein-protein interactions between the PMT family members offer a point of attack to shut down overall protein O-mannosylation in fungi.  相似文献   

3.
Protein O-glycosylation is an essential protein modification in eukaryotic cells. In Saccharomyces cerevisiae, O-mannosylation is initiated in the lumen of the endoplasmic reticulum by O-mannosyltransferase gene products (Pmt1p-7p). A search of the Schizosaccharomyces pombe genome database revealed a total of three O-glycoside mannosyltransferase homologs (ogm1+, ogm2+, and ogm4+), closely related to Saccharomyces cerevisiae PMT1, PMT2, and PMT4. Although individual ogm genes were not found to be essential, ogm1Delta and ogm4Delta mutants exhibited aberrant morphology and failed to agglutinate during mating. The phenotypes of the ogm4Delta mutant were not complemented by overexpression of ogm1+ or ogm2+, suggesting that each of the Ogm proteins does not have overlapping functions. Heterologous expression of a chitinase from S. cerevisiae in the ogm mutants revealed that O-glycosylation of chitinase had decreased in ogm1Delta cells. A GFP-tagged Fus1p from S. cerevisiae was specifically not glycosylated and accumulated in the Golgi in ogm4Delta cells. These results indicate that O-glycosylation initiated by Ogm proteins plays crucial physiological roles and can serve as a sorting determinant for protein transport of membrane glycoproteins in S. pombe.  相似文献   

4.
Protein O-mannosylation is an essential modification in fungi and mammals. It is initiated at the endoplasmic reticulum by a conserved family of dolichyl phosphate mannose-dependent protein O-mannosyltransferases (PMTs). PMTs are integral membrane proteins with two hydrophilic loops (loops 1 and 5) facing the endoplasmic reticulum lumen. Formation of dimeric PMT complexes is crucial for mannosyltransferase activity, but the direct cause is not known to date. In bakers' yeast, O-mannosylation is catalyzed largely by heterodimeric Pmt1p-Pmt2p and homodimeric Pmt4p complexes. To further characterize Pmt1p-Pmt2p complexes, we developed a photoaffinity probe based on the artificial mannosyl acceptor substrate Tyr-Ala-Thr-Ala-Val. The photoreactive probe was preferentially cross-linked to Pmt1p, and deletion of the loop 1 (but not loop 5) region abolished this interaction. Analysis of Pmt1p loop 1 mutants revealed that especially Glu-78 is crucial for binding of the photoreactive probe. Glu-78 belongs to an Asp-Glu motif that is highly conserved among PMTs. We further demonstrate that single amino acid substitutions in this motif completely abolish activity of Pmt4p complexes. In contrast, both acidic residues need to be exchanged to eliminate activity of Pmt1p-Pmt2p complexes. On the basis of our data, we propose that the loop 1 regions of dimeric complexes form part of the catalytic site.  相似文献   

5.
In Saccharomyces cerevisiae, protein O-mannosylation, which is executed by protein O-mannosyltransferases, is essential for a variety of biological processes as well as for conferring solubility to misfolded proteins. To determine if O-mannosylation plays an essential role in endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins, we used a model misfolded protein, Gas1*p. The O-mannose content of Gas1*p, which is transferred by protein O-mannosyltransferases, was higher than that of Gas1p. Both Pmt1p and Pmt2p, which do not transfer O-mannose to correctly folded Gas1p, participated in the O-mannosylation of Gas1*p. Furthermore, in a pmt1 Delta pmt2 Delta double-mutant background, degradation of Gas1*p is altered from a primarily proteasome dependent to a vacuolar protease-dependent pathway. This process is in a manner dependent on a Golgi-to-endosome sorting function of the VPS30 complex II. Collectively, our data suggest that O-mannosylation plays an important role for proteasome-dependent degradation of Gas1*p via the ERAD pathway and when O-mannosylation is insufficient, Gas1*p is degraded in the vacuole. Thus, we propose that O-mannosylation by Pmt1p and Pmt2p might be a key step in the targeting of some misfolded proteins for degradation via the proteasome-dependent ERAD pathway.  相似文献   

6.
7.
Protein O-mannosylation is an essential protein modification. It is initiated at the endoplasmic reticulum by a family of dolichyl phosphate-mannose:protein O-mannosyltransferases (Pmts), which is evolutionarily conserved from yeast to humans. Saccharomyces cerevisiae Pmt1p is an integral membrane protein of the endoplasmic reticulum. ScPmt1p forms a complex with ScPmt2p that is required for maximum transferase activity. Recently, we proposed a seven-transmembrane structural model for ScPmt1p. A large, hydrophilic, endoplasmic reticulum-oriented segment is flanked by five amino-terminal and two carboxyl-terminal membrane-spanning domains. Based on this model, a structure-function analysis of ScPmt1p was performed. Deletion mutagenesis identified the N-terminal third of the transferase as being essential for the formation of a functional ScPmt1p-ScPmt2p complex. Deletion of the central hydrophilic loop eliminates mannosyltransferase activity, but not ScPmt1p-ScPmt2p interactions. Alignment of all fully characterized PMT family members revealed that this central loop region contains three highly conserved peptide motifs, which can be considered as signatures of the PMT family. In addition, a number of invariant amino acid residues were identified throughout the entire protein sequence. In order to evaluate the functional significance of these conserved residues site-directed mutagenesis was performed. We show that several amino acid substitutions in the conserved motifs significantly reduce ScPmt1p activity. Further, the invariant residues Arg-64, Glu-78, Arg-138, and Leu-408 are essential for ScPmt1p function. In particular, Arg-138 is crucial for ScPmt1p-ScPmt2p complex formation.  相似文献   

8.
Protein-O-glycosylation in yeast: protein-specific mannosyltransferases   总被引:11,自引:2,他引:9  
S.cerevisiae contains at least six genes (PMT1–6) fordolicholphosphate-D-mannose: protein-O-D-mannosyltransferases.The in vivo mannosylation of seven O-mannosylated yeast proteinshas been analyzed in a number of pmt mutants. The results clearlyindicate that the various protein O-mannosyltransferases havedifferent specificities for protein substrates. Five of theproteins tested (chitinase, a-agglutinin, Kre9p, Bar1p, Pir2p/hsp150)are mainly underglycosylated in pmt1 and pmt2 mutants, wherebyqualitative differences exist among the various proteins. Twoof the O-mannosylated proteins (Ggp1p and Kex2p) are not atall affected in pmt1 and pmt2 mutants but are clearly underglycosylatedwhen PMT4 is mutated. Although the PMT4 gene product is shownto be responsible for O-mannosylating a Ser-rich region of Ggp1pin vivo, a penta-seryl-peptide is not an in vitro substratefor this transferase. A PMT3 mutation does affect O-manno-sylationof chitinase only in the genetic background of a pmt1pmt2 doublemutation, indicating that PMT1 and PMT2 can compensate for adeleted PMT3 gene. dolichol-phosphate PMT gene family protein glycosylation S. cerevisiae  相似文献   

9.
Protein O-mannosylation has been postulated to be critical for production and secretion of glycoproteins in fungi. Therefore, understanding the regulation of this process and the influence of heterologous expression of glycoproteins on the activity of enzymes engaged in O-glycosylation are of considerable interest. In this study we expressed cellobiohydrolase II (CBHII) of T. reesei, which is normally highly O-mannosylated, in Saccharomyces cerevisiae pmt mutants partially blocked in O-mannosylation. We found that the lack of Pmt1 or Pmt2 protein O-mannosyltransferase activity limited the glycosylation of CBHII, but it did not affect its secretion. The S. cerevisiae pmt1Delta and pmt2Delta mutants expressing T. reesei cbh2 gene showed a decrease of GDP-mannose level and a very high activity of cis-prenyltransferase compared to untransformed strains. On the other hand, elevation of cis-prenyltransferase activity by overexpression of the S. cerevisiae RER2 gene in these mutants led to an increase of dolichyl phosphate mannose synthase activity, but it did not influence the activity of O-mannosyltransferases. Overexpression of the MPG1 gene increased the level of GDP-mannose and stimulated the activity of mannosyltransferases elongating O-linked sugar chains, leading to partial restoration of CBHII glycosylation.  相似文献   

10.
A new DNA repair gene from fission yeast Schizosaccharomyces pombe rlp1+ (RecA-like protein) has been identified. Rlp1 shows homology to RecA-like proteins, and is the third S. pombe Rad51 paralog besides Rhp55 and Rhp57. The new gene encodes a 363 aa protein with predicted Mr of 41,700 and has NTP-binding motif. The rlp1Delta mutant is sensitive to methyl methanesulfonate (MMS), ionizing radiation (IR), and camptothecin (CPT), although to a lesser extent than the deletion mutants of rhp55+ and rhp51+ genes. In contrast to other recombinational repair mutants, the rlp1Delta mutant does not exhibit sensitivity to UV light and mitomycin C (MMC). Mitotic recombination is moderately reduced in rlp1 mutant. Epistatic analysis of MMS and IR-sensitivity of rlp1Delta mutant indicates that rlp1+ acts in the recombinational pathway of double-strand break (DSB) repair together with rhp51+, rhp55+, and rad22+ genes. Yeast two-hybrid analysis suggests that Rlp1 may interact with Rhp57 protein. We propose that Rlp1 have an accessory role in repair of a subset of DNA damage induced by MMS and IR, and is required for the full extent of DNA recombination and cell survival under condition of a replication fork collapse.  相似文献   

11.
12.
Amiloride, a diuretic drug that acts by inhibition of various sodium transporters, is toxic to the fission yeast Schizosaccharomyces pombe. Previous work has established that amiloride sensitivity is caused by expression of car1+, which encodes a protein with similarity to plasma membrane drug/proton antiporters from the multidrug resistance family. Here we isolated car1+ by complementation of Saccharomyces cerevisiae mutants that are deficient in pyridoxine biosynthesis and uptake. Our data show that Car1p represents a new high-affinity, plasma membrane-localized import carrier for pyridoxine, pyridoxal, and pyridoxamine. We therefore propose the gene name bsu1+ (for vitamin B6 uptake) to replace car1+. Bsu1p displays an acidic pH optimum and is inhibited by various protonophores, demonstrating that the protein works as a proton symporter. The expression of bsu1+ is associated with amiloride sensitivity and pyridoxine uptake in both S. cerevisiae and S. pombe cells. Moreover, amiloride acts as a competitor of pyridoxine uptake, demonstrating that both compounds are substrates of Bsu1p. Taken together, our data show that S. pombe and S. cerevisiae possess unrelated plasma membrane pyridoxine transporters. The S. pombe protein may be structurally related to the unknown human pyridoxine transporter, which is also inhibited by amiloride.  相似文献   

13.
We report the characterization of rdh54+, the second fission yeast Schizosaccharomyces pombe Rad54 homolog. rdh54+ shares sequence and functional homology to budding yeast RDH54/TID1. Rdh54p is present during meiosis with appropriate timing for a meiotic recombination factor. It interacts with Rhp51 and the meiotic Rhp51 homolog Dmc1 in yeast two-hybrid assays. Deletion of rdh54+ has no effect on DNA damage repair during the haploid vegetative cell cycle. In meiosis, however, rdh54Delta shows decreased spore viability and homologous recombination with a concomitant increase in sister chromatid exchange. The rdh54Delta single mutant repairs meiotic breaks with similar timing to wild type, suggesting redundancy of meiotic recombination factors. Consistent with this, the rdh54Delta rhp54Delta double mutant fails to repair meiotic double strand breaks. Live cell analysis shows that rdh54Delta rhp54Delta asci do not arrest, but undergo both meiotic divisions with near normal timing, suggesting that failure to repair double strand breaks in S. pombe meiosis does not result in checkpoint arrest.  相似文献   

14.
Mutations in either TSC1 or TSC2 cause tuberous sclerosis complex, an autosomal dominant disorder characterized by seizures, mental retardation, and benign tumors of the skin, brain, heart, and kidneys. Homologs for the TSC1 and TSC2 genes have been identified in mouse, rat, Fugu, Drosophila, and in the yeast Schizosaccharomyces pombe. Here we show that S. pombe lacking tsc1+ or tsc2+ have similar phenotypes including decreased arginine uptake, decreased expression of three amino acid permeases, and low intracellular levels of four members of the arginine biosynthesis pathway. Recently, the small GTPase Rheb was identified as a target of the GTPase-activating domain of tuberin in mammalian cells and in Drosophila. We show that the defect in arginine uptake in cells lacking tsc2+ is rescued by the expression of a dominant negative form of rhb1+, the Rheb homolog in S. pombe, but not by expressing wild-type rhb1+. Expression of the tsc2+ gene with a patient-derived mutation within the GAP domain did not rescue the arginine uptake defect in tsc2+ mutant yeast. Taken together, these findings support a model in which arginine uptake is regulated through tsc1+, tsc2+, and rhb1+ in S. pombe and also suggest a role for the Tsc1 and Tsc2 proteins in amino acid biosynthesis and sensing.  相似文献   

15.
PCR-mediated direct gene disruption in Schizosaccharomyces pombe.   总被引:2,自引:0,他引:2       下载免费PDF全文
We have examined the feasibility and efficiency of PCR-mediated direct gene disruptions in the fission yeast Schizosaccharomyces pombe. In the present study, the S.pombe ura4+ gene was amplified by PCR with oligonucleotides that had short flanking regions ( approximately 40 bp) to the target gene. Using this purified PCR product we were able to disrupt genes in an S. pombe strain bearing aura4 deletion, with an efficiency ranging between 1 and 3% among selected transformants. The results indicated that despite S.pombe's preference for non-homologous or illegitimate recombination, even very short stretches of homologous regions could be used to target genes at a defined frequency in this organism. The successful disruption of four independent genes (sts1+, gcs1+, gsh2+and hmt1+) by this method further demonstrates that, despite the relatively low efficiency, the method is very feasible, and it's simplicity, especially when coupled to phenotype-based screening, should greatly facilitate disruption of genes in S.pombe.  相似文献   

16.
17.
18.
Weisman R  Roitburg I  Nahari T  Kupiec M 《Genetics》2005,169(2):539-550
TOR protein kinases are key regulators of cell growth in eukaryotes. TOR is also known as the target protein for the immunosuppressive and potentially anticancer drug rapamycin. The fission yeast Schizosaccharomyces pombe has two TOR homologs. tor1+ is required under starvation and a variety of stresses, while tor2+ is an essential gene. Surprisingly, to date no rapamycin-sensitive TOR-dependent function has been identified in S. pombe. Herein, we show that S. pombe auxotrophs, in particular leucine auxotrophs, are sensitive to rapamycin. This sensitivity is suppressed by deletion of the S. pombe FKBP12 or by introducing a rapamycin-binding defective tor1 allele, suggesting that rapamycin inhibits a tor1p-dependent function. Sensitivity of leucine auxotrophs to rapamycin is observed when ammonia is used as the nitrogen source and can be suppressed by its replacement with proline. Consistently, using radioactive labeled leucine, we show that cells treated with rapamycin or disrupted for tor1+ are defective in leucine uptake when the nitrogen source is ammonia but not proline. Recently, it has been reported that tsc1+ and tsc2+, the S. pombe homologs for the mammalian TSC1 and TSC2, are also defective in leucine uptake. TSC1 and TSC2 may antagonize TOR signaling in mammalian cells and Drosophila. We show that reduction of leucine uptake in tor1 mutants is correlated with decreased expression of three putative amino acid permeases that are also downregulated in tsc1 or tsc2. These findings suggest a possible mechanism for regulation of leucine uptake by tor1p and indicate that tor1p, as well as tsc1p and tsc2p, positively regulates leucine uptake in S. pombe.  相似文献   

19.
The methylotrophic yeast, Pichia pastoris , is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, either N-linked or O-linked, can elicit an immune response or enable the expressed protein to bind to mannose receptors, thus reducing their efficacy. Previously we have reported the elimination of β-linked glycans in this organism. In the current report we have focused on reducing the O-linked mannose content of proteins produced in P . pastoris , thereby reducing the potential to bind to mannose receptors. The initial step in the synthesis of O-linked glycans in P . pastoris is the transfer of mannose from dolichol-phosphomannose to a target protein in the yeast secretory pathway by members of the protein-O-mannosyltransferase (PMT) family. In this report we identify and characterize the members of the P . pastoris PMT family. Like Candida albicans, P . pastoris has five PMT genes. Based on sequence homology, these PMTs can be grouped into three sub-families, with both PMT1 and PMT2 sub-families possessing two members each (PMT1 and PMT5, and PMT2 and PMT6, respectively). The remaining sub-family, PMT4, has only one member (PMT4). Through gene knockouts we show that PMT1 and PMT2 each play a significant role in O-glycosylation. Both, by gene knockouts and the use of Pmt inhibitors we were able to significantly reduce not only the degree of O-mannosylation, but also the chain-length of these glycans. Taken together, this reduction of O-glycosylation represents an important step forward in developing the P . pastoris platform as a suitable system for the production of therapeutic glycoproteins.  相似文献   

20.
Fission yeast Rnf4 homologs are required for DNA repair   总被引:1,自引:0,他引:1  
We describe two RING finger proteins in the fission yeast Schizosaccharomyces pombe, Rfp1 and Rfp2. We show that these proteins function redundantly in DNA repair. Rfp1 was isolated as a Chk1-interacting protein in a two-hybrid screen and has high amino acid sequence similarity to Rfp2. Deletion of either gene does not cause a phenotype, but a double deletion (rfp1Deltarfp2Delta) showed poor viability and defects in cell cycle progression. These cells are also sensitive to DNA-damaging agents, although they maintained normal checkpoint signaling to Chk1. Rfp1 and Rfp2 are most closely related to human Rnf4, and we showed that Rnf4 can substitute functionally for Rfp1 and/or Rfp2. The double mutants also showed significantly increased levels of protein SUMOylation, and we identified an S. pombe Ulp2/Smt4 homolog that, when overexpressed, reduced SUMO levels and suppressed the DNA damage sensitivity of rfp1Delta rfp2Delta cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号